Skip to main content

Abstract

The formation of a seed in the life cycle of higher plants is a unique adaptation. It incorporates embryo development with various physiological processes that are meant to insure the survival of the plant in the next generation. These adaptations include the accumulation of nutritive reserves, an arrest of tissue growth and development, and finally desiccation. To survive long periods of time in this dry state until environmental conditions are favorable to resume development into a seedling, numerous seeds have also acquired different mechanisms of dormancy. All of these traits are also of considerable agronomic importance (e.g. nutritive value, yield, germination).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerson, R. C. (1984) Regulation of soybean embryogenesis by abscisic acid. J. Exp. Bot. 35, 403–413.

    Article  CAS  Google Scholar 

  2. Ackerson, R. C. (1984) Abscisic acid and precocious germination in soybeans. J. Exp. Bot. 35, 414–421.

    Article  CAS  Google Scholar 

  3. Albone, K. S., Gaskin, P., MacMillan, J. Sponsel, V. M. (1984) Identification and localization of gibberellins in maturing seeds of the curcurbit Sechium edule, and a comparison between this curcurbit and the legume Pkaseolus coccineus. Planta 162, 560–565.

    Article  CAS  Google Scholar 

  4. Baulcombe, D,, Lazarus, C., Martienssen, R. (1984) Gibberellins and gene control in cereal aleurone cells. J. Embryol. Exp. Morph. 83 (Suppl.), 119–135.

    CAS  PubMed  Google Scholar 

  5. Bewley, J. D., Black, M. (1978) Physiology and Biochemistry of Seeds. Springer, N.Y.

    Google Scholar 

  6. Black, M. (1983) Abscisic acid in seed germination and dormancy. In Abscisic Acid, Chapt. 10, pp. 331–363, Addicott, F. T., ed., Praeger Publishers, New York, NY.

    Google Scholar 

  7. Brady, T., Walthall, E. D. (1985) The effect of the suspensor and gibberellic acid on Phaseolus vulgaris embryo protein content. Develop. Biol. 107, 531–536.

    Article  CAS  PubMed  Google Scholar 

  8. Bray, E. A., Beachy, R. N. (1985) Regulation by ABA of (Jconglycinin expression in cultured developing soybean cotyledons. Plant Physiol. 79, 746–750.

    Article  CAS  PubMed  Google Scholar 

  9. Chandler, P. M., Zwar, J. A., Jacobesen, J. V., Higgins, T. J. V., Inglis, A. S. (1984) The effects of gibberellic acid and abscisic acid on a-amylase mRNA levels in barley aleurone layers. Studies using an α-amylase cDNA clone. PL Mol. Biol. 3, 407–418.

    CAS  Google Scholar 

  10. Dommes, J., Northcote, D. H. (1985) The action of exogenous abscisic and gibberellic acids on gene expression in germinating castor beans. Planta 165, 513–521.

    Article  CAS  Google Scholar 

  11. Dure, L. (1985) Embryogenesis and gene expression during seed formation. InOxford Surveys in Plant Molecular and Cell Biology, vol. 2, pp. 179–197, Miflin, B. J., ed., Oxford Univ. Press, Oxford, UK.

    Google Scholar 

  12. Eisenberg, A. J., Mascarnhas, J. P. (1985) Abscisic acid and the regulation of synthesis of specific seed proteins and their messenger RNAs during culture of soybean embryos. Planta 166, 505–514.

    Article  CAS  Google Scholar 

  13. Eeuwens, C. J., Schwabe, W. W. (1975) Seed and pod wall development in Pisum sativum, L. Inrelation to extracted and applied hormones. J. Exp. Botan. 26, 1–14.

    Article  CAS  Google Scholar 

  14. Finkelstein, R., Crouch, M. (1985) Control of embryo maturation in rapeseed. InPlant genetics, in press, Freeling, M., ed., Liss, N.Y.

    Google Scholar 

  15. Finkelstein, R. R., Tenbarge, K. M., Shumway, J. E., Crouch, M. L. (1985) Role of ABA in maturation of rapeseed embryos. Plant Physiol. 78, 630 - 636.

    Article  CAS  PubMed  Google Scholar 

  16. Fong, F., Smith, J. D., Koehler, D. E. (1983) Early events in maize seed development. Plant Physiol. 52, 350–356.

    Google Scholar 

  17. Galau, G. A., Hughes, D. W., Dure, L. (1986) Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. PL Mol. Biol. InPress.

    Google Scholar 

  18. Higgins, T J. V. (1984) Synthesis and regulation of major proteins in seeds. Annu. Rev. Plant Physiol. 35, 191–221.

    Article  CAS  Google Scholar 

  19. Ho, D.TD-H., Varner, J E. (1976) Responses of barley aleurone layers to abscisic acid. PL Physiol. 57, 175–178.

    Article  CAS  Google Scholar 

  20. Hsu, F. (1979) Abscisic acid accumulation in developing seeds of Phaseolus vulgaris L. PL Physiol. 63, 552–556.

    Article  CAS  Google Scholar 

  21. Hymowitz, T. (1983) Variation in and genetics of certain antinutritional and biologically active components of soybean seed. InBetter crops for food, pp. 49–56, Nugent, J., O’Connor, M., eds., Ciba Foundation Symp. #97, Pitman, London.

    Google Scholar 

  22. Karssen, C. M., Brinkhorst-Van Der Swan, D. L. C., Breekland, A. E., Koornneef, M. (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158–165.

    Article  CAS  Google Scholar 

  23. King, R. W. (1976) Abscisic acid in developing wheat grains and its relationship to grain growth and maturation. Planta 132, 43–51.

    Article  CAS  Google Scholar 

  24. King, R. W., Salminen, S. O., Hill, R. D., Higgins, T. J. V. (1979) Abscisic acid and gibberellin action in developing kernels of Triticale (c.v. 6A190). Planta 146, 249–255.

    Article  CAS  Google Scholar 

  25. Koornneef, M., Reuling, G., Karssen, C. M. (1984) The isolation and characterization of abscisic-acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 61, 377–383.

    Article  CAS  Google Scholar 

  26. Letham, D. S., Goodwin, P. B., Higgins, T. J. V. (ed) (1978) Phytohormones and Related Compounds: A Comprehensive Treatise. 648 pp. Elsevier, N.Y.

    Google Scholar 

  27. Long, S. R., Dale, R. M. K., Sussex, I. M. (1981) Maturation and germination of Phaseolus vulgaris embryonic axis in culture. Planta 153, 405–415.

    Article  CAS  Google Scholar 

  28. Meinke, D. W. (1986) Use of embryo lethal mutants to study plant embryo development. InOxford Surveys in Plant Molecular and Cell Biology, Vol. 3 in press, Miflin, B. J. ed., Oxford Univ. Press, Oxford, UK.

    Google Scholar 

  29. Michael, G., Beringer, H. (1980) The role of hormones in yield formation. In: Physiological Aspects of Crop Productivity, pp 85–116, 15th Colloquium Int. Potash Inst., Bern, Switzerland.

    Google Scholar 

  30. Michael, G., Seiler-Kelbitsch, H. (1972) Cytokinin content and kernel size of barley grains as affected by environmental and genetic factors. Crop Sci. 12, 162–165.

    Article  Google Scholar 

  31. Misra, S., Kermode, A., Bewley, J. D. (1985) Maturation drying as the “switch” that terminates seed development and promotes germination. InMolecular Form and Function of the Plant Genome, pp. 113–128, van Vloten-Doting, L., Groot, G. S. P., Hall, T.C. eds., Plenum, N.Y.

    Google Scholar 

  32. Mok, D. W. S., Mok, M. C., Rabakoarihanta, A., Shii, C. T. (1985) Phaseolus-Wide hybridization through embryo culture. InIn Vitro Improvement of Crops, in press, Bajaj, Y. P. S. ed., Springer-Verlag, Berlin.

    Google Scholar 

  33. Mounler, M. A. Kh., Bangerth, F., Story, V. (1980) Gibberellin-like substances and indole type auxins in developing grains of normal- and high-lysine genotypes of barley. Physiol. Plant. 48, 568–753.

    Article  Google Scholar 

  34. Mundy, J. (1984) Hormonal regulation of a-amylase inhibitor synthesis in germinating barley. Carlsberg Res. Commun. 49, 439–444.

    CAS  Google Scholar 

  35. Naumann, R. K., Dorffing, K. (1982) Variation of free and conjugated abscisic acid, and dihydrophaseic acid levels in ripening barley grains. Plant Sci. Lett. 27, 111–117.

    CAS  Google Scholar 

  36. Neill, S. J., Horgan, R. (1985) Abscisic acid production and water relations in wilty tomato mutants subjected to water deficiency. J. Exp. Botan. 36, 1222–1231.

    Article  CAS  Google Scholar 

  37. Pharis, R. P., King, R. W. (1985) Gibberellins and reproductive development in seed plants. Ann. Rev. Plant Physiol. 30, 517–568.

    Article  Google Scholar 

  38. Phillips, R., Green, C. E., Gengenback, B. G. (eds)(1979) The Plant Seed: Development, Preservation and Germination. Academic Press, N.Y.

    Google Scholar 

  39. Potts, W. C., Reid, J. B. (1983) Intermode length in Pisum. II. The effect and interaction of Na/na and Le/le gene differences on endogenous gibberellins-like substances. Physiol. Plant. 57, 448–454.

    Article  CAS  Google Scholar 

  40. Quatrano, R. S., Ballo, B. L., Williamson, J. D., Hamblin, M. T., Mansfield, M. (1983) ABA controlled expression of embryo-specific genes during wheat grain development. InPlant molecular biology, pp. 343–353, Goldberg, R., ed., Liss, New York.

    Google Scholar 

  41. Quatrano, R. S., Hopkins, R., Raikhel, N. V. (1983). Control of the synthesis and localization of wheat germ agglutinin during embryogenesis. InChemical taxonomy, molecular biology, and function of plant lectins, pp. 117–130, Goldstein, I., J., Etzler, M. E., eds., Liss, New York.

    Google Scholar 

  42. Quatrano, R. S.(1986) Regulation of gene expression by abscisic acid during angiosperm embryo development. InOxford Surveys in Plant Molecular and Cell Biology, vol. 3 in press, Miflin, B. J. ed., Oxford Univ. Press,Oxford, UK.

    Google Scholar 

  43. Raikhel, N. V., Quatrano, R. S. (1986) Location of wheat germ agglutinin in developing wheat embryos and those cultured in abscisic acid. Planta, in press.

    Google Scholar 

  44. Robichaud, C. S., Wong, J., Sussex, I. M. (1980) Control of in vitro growth of viviparous embryo mutants of maize by abscisic acid. Develop. Genet., 1, 325–330.

    Article  CAS  Google Scholar 

  45. Rogers, S. 0., Quatrano, R. S. (1983) Morphological staging of wheat caryopsis development. Am. J. Bot. 70, 308–311.

    Google Scholar 

  46. Scowcroft, W. R., Larkin, P. J. (1983) Somaclonal variation and genetic improvement of crop plants. InBetter crops for food, pp. 177–88, Nugent, J., O’Connor, M., eds., Ciba Foundation Symp. #97, Pitman, London.

    Google Scholar 

  47. Seiler-Kelbitsch, H., Michael, G., Hauser, H., Fischbeck, G. (1975) Cytokiningehalt und Kornentwicklung von Gerstenmutanten mit unterschiedlicher Korngrosse. Z. Plfanzenzuchtung. 75, 311–316.

    Google Scholar 

  48. Sheridan, W. F., Neuffer, M. G. (1982) Maize developmental mutants. J. Heredity 70, 318–329.

    Google Scholar 

  49. Stinissen, H. M., Peumans, W. J., DeLanghe, E. (1984) Abscisic acid promotes lectin biosynthesis in developing and germinating rice embryos. Plant Cell Rep. 3, 55–59.

    Article  CAS  Google Scholar 

  50. Sussex, I. (1975) Growth and metabolism of the embryo and attached seedling of the viviparous mangrove Rhizophora mangle. Amer. J. Bot. 62, 948–953.

    Article  CAS  Google Scholar 

  51. Sussex, I. M., Dale, R. M. K. (1979) Hormonal control of storage protein synthesis in Phaseolus vulgaris. InThe plant seed: development, preservation and germination, pp. 129–141, Phillips, R. L., Green, C. E., Gengenbach, B. G., eds., Academic Press, New York.

    Google Scholar 

  52. Tollenaar, M. (1977) Sink-source relationship during reproductive development in maize. A review. Maydica XXII, 49–75.

    Google Scholar 

  53. Triplett, B. A., Quatrano, R. S. (1982) Timing, localization, and control of wheat germ agglutinin synthesis in developing wheat e mbryos. Dev. Biol. 91, 491–496.

    Article  CAS  PubMed  Google Scholar 

  54. Walbot, V. (1978) Control mechanisms for plant embryogeny. InDormancy and Developmental Arrest, pp. 113–166, Clutter, M., ed., Academic Press, N.Y.

    Google Scholar 

  55. Williamson, J. D. (1985) The effects of abscisic acid on gene expression during embryogenesis in wheat. Ph.D. dissertation. Oregon State University, pp. 95.

    Google Scholar 

  56. Williamson, J. D., Quatrano, R. S., Cuming, A. C. (1985) Em polypeptide and its messenger RNA levels are modulated by abscisic acid during embryogenesis in wheat. Eur. J. Biochem. 152, 501–507.

    Article  CAS  PubMed  Google Scholar 

  57. Yeung, E. C., Sussex, I. M. (1979) Embryogeny of Phaseolus coccineus: the suspensor and the growth of the embryo-proper in vitro. Z. Pflanzenphysiol. 91, 423–33.

    CAS  Google Scholar 

  58. Zeevaart, J. A. D. (1965) Reduction of the gibberellin content of Pharbitis seeds by CCC and after-effects in the progeny. Plant Physiol. 41, 856–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Quatrano, R.S. (1987). The Role of Hormones During Seed Development. In: Davies, P.J. (eds) Plant Hormones and their Role in Plant Growth and Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3585-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3585-3_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-3498-6

  • Online ISBN: 978-94-009-3585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics