Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 21))

Abstract

We seek optimal methods of estimating power spectrum and chirp (frequency change) rate for the case that one has incomplete noisy data on values y(t) of a time series. The Schuster periodogram turns out to be a “sufficient statistic” for the spectrum, a generalization playing the same role for chirped signals. However, the optimal processing is not a linear filtering operation like the Blackman-Tukey smoothing of the periodogram, but rather a nonlinear operation. While suppressing noise/side lobe artifacts, it achieves the same kind of improved resolution that the Burg method did for noiseless data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber, N. F., and F. Ursell (1948), “The generation and propagation of ocean waves and swell,” Phil. Trans. Roy. Soc. London A240, pp. 527–260.

    Google Scholar 

  • Blackman, R. B., and J. W. Tukey (1958), The Measurement of Power Spectra, Dover Publications, New York.

    Google Scholar 

  • Burg, J. P. (1967), “Maximum entropy spectral analysis,” in Proc. 37th Meet. Soc. Exploration Geophysicists. Reprinted (1978) in Modern Spectrum Analysis, D. Childers, ed., IEEE Press, New York.

    Google Scholar 

  • Burg, J. P. (1975), “Maximum Entropy Spectral Analysis,” Ph.D. Thesis, Stanford University.

    Google Scholar 

  • Griffin, D. R. (1958), Listening in the Dark, Yale University Press, New Haven; see also R. H. Slaughter and D. W. Walton, eds. (1970), About Bats, SMU Press, Dallas, Texas.

    Google Scholar 

  • Nikolaus, B., and D. Grischkowsky (1983), “90 fsec tunable optical pulses obtained by two-stage pulse compression,” Appl. Phys. Lett. 43, pp. 228–230.

    Article  Google Scholar 

  • Gull, S. F., and G. J. Daniell (1978), “Image reconstruction from incomplete and noisy data,” Nature 272, pp. 686–690.

    Article  Google Scholar 

  • Helliwell, R. A. (1965), Whistlers and Related Ionospheric Phenomena, Stanford University Press, Palo Alto, California.

    Google Scholar 

  • Jaynes, E. T. (1957), “Information theory and statistical mechanics,” Phys. Rev. 106, pp. 620–630.

    Article  MathSciNet  Google Scholar 

  • Jaynes, E. T. (1973), “Survey of the present status of neoclassical radiation theory,” in Proceedings of the 1972 Rochester Conference on Optical Coherence, L. Mandel and E. Wolf, eds., Pergamon Press, New York.

    Google Scholar 

  • Jaynes, E. T. (1980), “Marginalization and prior probabilities,” reprinted in E. T. Jaynes (1982), Papers on Probability, Statistics, and Statistical Physics, a reprint collection, D. Reidel, Dordrecht-Holland.

    Google Scholar 

  • Jaynes, E. T. (1981), “What is the problem?” Proceedings of the Second ASSP Workshop on Spectrum Analysis, S. Haykin, ed., McMaster University.

    Google Scholar 

  • Jaynes, E. T. (1982), “On the rationale of maximum entropy methods,” Proc. IEEE 70, pp. 939–952.

    Article  Google Scholar 

  • Munk, W. H., and F. E. Snodgrass (1957), “Measurement of southern swell at Guadalupe Island,” Deep-Sea Research 4, pp. 272–286.

    Article  Google Scholar 

  • Savage, L. J. (1954), The Foundations of Statistics, Wiley & Sons, New York.

    MATH  Google Scholar 

  • Schuster, A. (1897), “On lunar and solar periodicities of earthquakes,” Proc. Roy. Soc. 61, pp. 455–465.

    Article  MATH  Google Scholar 

  • Tukey, J. W., P. Bloomfield, D. Brillinger, and W. S. Cleveland (1980), The Practice of Spectrum Analysis, notes on a course given in Princeton, N.J., in December 1980.

    Google Scholar 

  • Tukey, J. W., and D. Brillinger (1982), unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this paper

Cite this paper

Jaynes, E.T. (1987). Bayesian Spectrum and Chirp Analysis. In: Smith, C.R., Erickson, G.J. (eds) Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems. Fundamental Theories of Physics, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3961-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3961-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8257-0

  • Online ISBN: 978-94-009-3961-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics