Skip to main content

The Compaction of Rapidly Solidified Materials

  • Chapter
Science and Technology of the Undercooled Melt

Part of the book series: Nato Asi Series ((NSSE,volume 114))

Abstract

Powder compaction has two equally important aspects: the elimination of pores and the creation of bonds between the particles. Important bonding mechanisms are cold welding and mechanical interlocking of particle surfaces. The first requires plastic flew in order to break the surface oxide, the second depends on irregular surface geometry. Hard, smooth particles do not usually permit the action of either of these mechanisms; after compaction, they simply fall apart again. Such powders must be contained in capsules and, after compaction, must be bonded by sintering or hot pressing. This has in fact become the normal fabrication route for superalloy and tool steel powders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bockstiegel G, Hewing J, Arch. EisenHittenw., 36, 1965, 751.

    Google Scholar 

  2. James PJ, Powder Metall. Internat., 4, 1972, 82, 145 and 193.

    Google Scholar 

  3. Kawakita K, Ludde KH, Powder Technol., 4, 1970771, 61.

    Google Scholar 

  4. Arzt E, Fischmeister H, Mem. Sci. Rev. Metall.,76, 1979, 573.

    Google Scholar 

  5. Shapiro I, Kolthoff M, J. Phys. Colloid Chem., 51, 1947, 483.

    Google Scholar 

  6. Konopicky K, Radex-Rundsch,3, 1948, 141.

    Google Scholar 

  7. Tbrre C, Berg- u. Hiittenm. Mh., 93, 1948, 62.

    Google Scholar 

  8. Heckel RW, Trans. AIME, 221, 1961, 1001.

    Google Scholar 

  9. Heliwell N, James PJ, Powder Metall. Internat., 7, 1973, 25.

    Google Scholar 

  10. James PJ, Powder Metall. Internat., 20, 1977, 21 and 199.

    Google Scholar 

  11. Sundström BO, Fischmeister H, Powder Metall. Internat.5, 1973, 171.

    Google Scholar 

  12. Fischmeister H, Arzt E, Olsscn LR, Powder Metall., 21, 1978, 179.

    Google Scholar 

  13. Fischmeister H, Arzt E, Powder Metall., 26, 1983, 82.

    Google Scholar 

  14. Arzt E, Acta metall., 30, 1982, 1883.

    Google Scholar 

  15. Scott GD, Nature, 194, 1962, 956.

    Google Scholar 

  16. Fischmeister H, Arzt E, 7th Intern. Powder Metall. Conf., Dresden 1981, Vol. 1, 105.

    Google Scholar 

  17. Arzt E, Ashby MF, Easterling KE, Metall. Trans., 14A, 1983, 211.

    Google Scholar 

  18. Balzerowiak HP, Bock-Nussbaum F, Prümmer R, High Temp.-High Press., 3, 1971, 517.

    Google Scholar 

  19. Clyens S, Johnson W, Mater. Sci. Eng., 30, 1977, 121.

    Google Scholar 

  20. Lennon CRA, Hialla AK, Williams JD, Powder Metall. 21, 1978, 29.

    Google Scholar 

  21. Gourdin WH, Mater. Sci. Eng., 1984, 179.

    Google Scholar 

  22. Davis RF and Palmour H III, Journal of Materials Education (JEMMSE), 5, 1, 1983, 151.

    Google Scholar 

  23. Davis RF, Horie Y, Scattergood RO, Palmour H III: Advances in Ceramics, Kingery WD, ed., Amer. Ceram. Soc., Columbus, 1984, 157.

    Google Scholar 

  24. Meyers MA, Gupta BB, Murr LE, J. Metals, 33, 1981, 21.

    Google Scholar 

  25. Raybould D, Morris DG, Cooper GA, J. Mater. Sci., U, 1979, 2523.

    Google Scholar 

  26. Deutsches Patent No. 27 376 74.9.

    Google Scholar 

  27. Raybould D. Proc. 15th Intern. Machine Tool Res. and Design Conf., Tobias SA, Koenigsberger F. ( Eds) MacMillan, London 1975, 627.

    Google Scholar 

  28. Morris DG, Met. Sci., 1981, 116.

    Google Scholar 

  29. Kasiraj P, Vreeland T Jr, Schwarz RB, Ahrens TJ, Acta metall.,32, 1984, 1235.

    Google Scholar 

  30. Campbell JD, Mater. Sci.12, Eng., 1973, 3.

    Google Scholar 

  31. Raybould D, J. Mater. Sci.,16, 1981, 589.

    Google Scholar 

  32. Morris DG, Mater. Sci. Eng.57, 1983, 187.

    Google Scholar 

  33. Crossland B, Williams JD, Metall. Rev., 15, 1970, 79.

    Google Scholar 

  34. Morris DG, Metal Science, 16, 1982, 457.

    Google Scholar 

  35. Morris DG, The Dynamic Compaction of Metal Powders, in “Metastable Crystalline Materials”, MRS Boston 1983.

    Google Scholar 

  36. Roman OV, Bogdanov AP, Voloshin YuN, GordDtsov VG, Pikus IM, Termich. Cbrab. Metall., 10, 1983, 57.

    Google Scholar 

  37. Sargent PM, Ashby MF, Report CUED/C/MATS/TR. 98, March 1983, Cambridge University.

    Google Scholar 

  38. Sargent PM, Ashby MF, Report CUED/C/MATS/TR. 98, March 1983, Cambridge University.

    Google Scholar 

  39. Pepper SV, J. Appl. Phys., 47, 1976, 801.

    Google Scholar 

  40. Bowden FP, Tabor D, Friction and Lubrication of Solids, Oxford University Press, London, 1950.

    Google Scholar 

  41. Morris DG: Compaction of Amorphous Ribbons and Powders. RQ5, 1984, Wurzburg.

    Google Scholar 

  42. Morris DG, Metal Sci., 14, 1980, 215.

    Google Scholar 

  43. Morris DG, J. Material Sci., 17, 1982, 1789.

    Google Scholar 

  44. Schwarz KB, Kasiraj P, Vreeland T Jr, Ahrens TJ, Acta metall.,32, 1984, 1243.

    Google Scholar 

  45. Fischmeister HF, Larsson LE, Powder Metall., 17, 1974, 227.

    Google Scholar 

  46. Morris DG, Metal Pcwder Report, 1983, p. 405.

    Google Scholar 

  47. Liebermann HH, Mater. Sci. Eng., 46, 1980, 241.

    Google Scholar 

  48. Pourahimi S, Thesis MS, Northeastern Univ., Boston, 1980, quoted in ref. 51.

    Google Scholar 

  49. Bruson A, Maloufi N, Mater. Sci. Eng., 64, 1984, LI 3.

    Google Scholar 

  50. Miller SA, Murphy RJ, in “Proc. 2nd Conf. Rapid Solid. Process.”, Mehrabian R, Kear BH, Cohen M (Eds), Claitorś, Baton Rouge, 1980, 385.

    Google Scholar 

  51. Miller SA in “Amorphous Metallic Alloys”, Luborsky FE (Ed), Butterworths, London, 1983, 506.

    Google Scholar 

  52. Stempln JL, Wexell DR, US Pat. 4 298 382, 1981, quoted in ref. 51.

    Google Scholar 

  53. Smith JS, Perepezko JH, Rasmussen DH, Loper Cr Jr, US Pat. 4 282 034, 1981.

    Google Scholar 

  54. Gibbs MRJ, Evetts JE, Shah NJ, J. Appl. Phys., 50, 1979, 7642.

    Google Scholar 

  55. Krenitsky DJ, Ast DG, J. Mater. Sci., 14, 1979, 275.

    Google Scholar 

  56. Gibeling JC, Nix WD, Scripta Met., 12, 1978, 919.

    Google Scholar 

  57. Anderson PM III, Lord AE, Jr., Mater. Sci. Eng., 44, 1980, 279.

    Google Scholar 

  58. Ast DG, Krenitsky DJ, Mater. Sci. Eng., 23, 1976, 241.

    Google Scholar 

  59. Bergmann HW, Fritsch HU, Metal Sci., 16, 1982, 197.

    Google Scholar 

  60. Fischmeister HF, Ann. Rev. Mater. Sci., 5, 1975, 151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Fischmeister, H., Arzt, E. (1986). The Compaction of Rapidly Solidified Materials. In: Sahm, P.R., Jones, H., Adam, C.M. (eds) Science and Technology of the Undercooled Melt. Nato Asi Series, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4456-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4456-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8483-3

  • Online ISBN: 978-94-009-4456-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics