Skip to main content

The role of the atmosphere in nitrogen cycling

El papel de la atmosfera en el ciclo de nitrógeno

  • Chapter
Nitrogen Cycling in Ecosystems of Latin America and the Caribbean

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 6))

Abstract

In this work an analysis of the sources, atmospheric concentration, chemical reactions and sinks of the principal atmospheric nitrogen compounds is made. Atmospheric emissions of N2O and NH3 are almost entirely due to biological activity on the continents and in the oceans. The combustion of fossil fuels and biomass is the principal source of NOx. The only relevant chemical transformations in the troposphere are the oxidation of NOx to NO3 - and the formation of ammonium salts. Only 10% of the NH3 emitted is oxidized. Washout of NH4 + and NO3 - by rainfall is the principal mechanism for removing nitrogen compounds from the atmosphere. Part of the N2O enters the stratosphere and part must be removed in the biosphere by processes not yet established.

NOx produced in the atmosphere by the burning of fossil fuels and biomass and by lightning represents between 30 and 40% of the total nitrogen fixed. A complete nitrogen balance for the troposphere is presented.

Since the photochemical oxidation of NOx is rapid and atmospheric transport is relatively slow with respect to the cycling of water in the troposphere, nitrogen compounds return to the earth’s surface close to where they were emitted. Fixed-nitrogen inputs to the continents and oceans due to biological and industrial fixation are slightly greater than those due to rain water. However, since rain falls everywhere, input from this source is only important on soils not subject to intensive agriculture.

Resumen

En el presente trabajo se hace un análisis de las fuentes, concentraciones, reacciones químicas y depósitos de los principales compuestos nitrogenados atmosféricos. Las emisiones a la atmósfera de N2O y NH3 pro vienen casi exclusivamente de procesos biológicos en continentes y océanos. Los NOx son producidos principalmente en la quema de combustibles fósiles y de biomasa. La oxidación de los NOx a NO3 - y la formación de sales de amonio son las únicas transformaciones químicas relevantes en la tropósfera. Sólo el 10% del NH3 emitido es oxidado. La remoción de la atmósfera de los compuestos nitrogenados se produce fundamentalmente por lavado por lluvia de NH4 + y NO3 -. Parte del N2O pasa a la estratósfera y parte debe ser removido en la biósfera a través de un proceso no establecido.

En la atmósfera ocurren importantes procesos de fijación de nitrógeno y el NOx producido en la quema de combustibles fósiles y de biomasa y en las descargas eléctricas representa entre 30 y 40% del total del nitrógeno fijado. Se plantea un balance del nitrógeno troposférico.

Teniendo en consideración que la oxidación fotoquímica del NOx es rápida y que el transporte atmosférico es relativamente lento con respecto al ciclo troposférico del agua, se encuentra que los compuestos nitrogenados vuelven a la superficie de la tierra en lugares cercanos a donde fueron emitidos. Se establece que la entrada de nitrógeno fijo a los continentes y océanos por fijación biológica e industrial es escasamente superior a la producida en el agua de lluvia. Sin embargo, debido a que la lluvia cae en todas partes, el aporte de este nitrógeno fijo en el agua de lluvia es sólo significativo en los suelos en donde no se practica una agricultura intensiva.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bermejo H A and Sanhueza E 1980 The nitrogenated fertilizers and the stratosphere’s ozone shield. Interciencia 5, 231–238. (In Spanish, English summary.)

    Google Scholar 

  2. Blackmer A M and Bremner J M 1976 Potential of soil as a sink of atmospheric nitrous oxide. Geophys. Res. Lett. 3, 739–742.

    Article  Google Scholar 

  3. Bremner J M and Blackmer A M 1978 Nitrous oxide: emission from soils during nitrification of fertilizer-nitrogen. Science 199, 295–296.

    Article  Google Scholar 

  4. Campbell I M 1977 Energy and the Atmosphere: A Physical-Chemical Approach. New York: J. Wiley. 198 p.

    Google Scholar 

  5. Chameides W. Stedman D, Dickerson R, Rusch D and Cicerone R 1977 NOx production in lightning. J. Atmos. Sci. 34, 143–149.

    Article  Google Scholar 

  6. Cicerone R J, Shetler J D, Stedman D H, Kelly T J and Liu S C 1978 Atmospheric N2O: measurements to determine its sources, sinks, and variations. J. Geophys. Res. 83, 3042–3050.

    Article  Google Scholar 

  7. Cohen Y and Gordon L I 1979 Nitrous oxide production in the ocean. J. Geophys. Res. 84, 347–353.

    Article  Google Scholar 

  8. Cox R A 1977 Some measurements of ground-level NO, NO2, and O3 concentrations at an unpolluted maritime site. Tellus 29, 356–362.

    Article  Google Scholar 

  9. Crutzen P J 1976 Upper limits on atmospheric ozone reductions following increased application of fixed nitrogen to the soil. Geophys. Res. Lett. 3, 169–172.

    Article  Google Scholar 

  10. Crutzen P J 1979 The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu. Rev. Earth Planet. Sci. 7, 443–472.

    Article  Google Scholar 

  11. Crutzen P J, Leroy E H, Krasnec J P, Pollock W H and Sciler W 1979 Biomass burning as a source of the atmospheric gases CO, H2, N2O, NO, CH3C1 and COS. Nature London 282, 253–256.

    Article  Google Scholar 

  12. Dawson G A 1977 Atmospheric ammonia flux from undisturbed land. J. Geophys. Res. 82C, 3125–3133.

    Article  Google Scholar 

  13. Elkins J W, Wofsy S C, McElroy M B, Kolb C E and Kaplan W A 1978 Aquatic sources and sinks for nitrous oxide. Nature London 275, 602–606.

    Article  Google Scholar 

  14. Eriksson E 1952 Composition of atmospheric precipitation. I. Nitrogen compounds. Tellus 4, 215–232.

    Google Scholar 

  15. Galbally I E and Roy C R 1978 Loss of fixed nitrogen from soils by nitric oxide exhalation. Nature London 275, 734–735.

    Article  Google Scholar 

  16. Hahn J 1974 The North Atlantic Ocean as a source of atmospheric N2O. Tellus 26, 160–168.

    Article  Google Scholar 

  17. Hahn J and Junge C 1977 Atmospheric nitrous oxide: a critical review. Z. Naturforsch. 32a, 190–214.

    Google Scholar 

  18. Huebert B J and Lazrus A L 1978 Global tropospheric measurements of nitric acid vapor and particulate nitrate. Geophys. Res. Lett. 5, 577–580.

    Article  Google Scholar 

  19. Junge C E 1963 Air Chemistry and Radioactivity, p 10. New York. Academic Press. 375 p.

    Google Scholar 

  20. Levy H 1974 Photochemistry of the troposphere. — Adv. Photochem. 9, 368–524.

    Google Scholar 

  21. Liu S C, Cicerone R J, Donahue T M and Chameides W L 1977 Sources and sinks of atmospheric N2O and the possible ozone reduction due to industrial-fixed nitrogen fertilizers. Tellus 29, 251–263.

    Article  Google Scholar 

  22. McElroy M B 1977 Chemical process in the solar system: A kinetic perspective. Phys. Chem. Ser. 2,9–15. London: Butterworths.

    Google Scholar 

  23. McElroy M B, Wofsy S C and Yung Y L 1977 The nitrogen cycle: perturbations due to man and their impact on stratospheric N2O and O3. Trans. Roy. Soc. London 277B, 159–181.

    Article  Google Scholar 

  24. Noxon J F 1978 Tropospheric NO2. J. Geophys. Res. 83C, 3051–3057.

    Article  Google Scholar 

  25. Pratt P F, Barber J C, Corrin M L, Goering J, Hauck R D, Johnston H S, Klute A, Knowles R, Nelson D W, Pickett R C and Stephens E R 1977 Effect of increased nitrogen fixation on stratospheric ozone. Climate Change 1, 109–135.

    Article  Google Scholar 

  26. Robinson E and Robbins R C 1970 Gaseous nitrogen compound pollutants from urban and natural sources. J. Air Poll. Contr. Assoc. 20, 303–306.

    Google Scholar 

  27. Söderlund R and Svensson B H 1976 The global nitrogen cycle. In Svensson B H and Söderlund R (Eds.). Nitrogen, Phosphorus and Sulphur — Global Cycles. SCOPE Report 7. Ecol. Bull. Stockholm 22, 23–77.

    Google Scholar 

  28. Yung Y L and McElroy M B 1979 Fixation of nitrogen in the prebiotic atmosphere. Science 203, 1002–1004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff/Dr W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Sanhueza, E. (1982). The role of the atmosphere in nitrogen cycling. In: Robertson, G.P., Herrera, R., Rosswall, T. (eds) Nitrogen Cycling in Ecosystems of Latin America and the Caribbean. Developments in Plant and Soil Sciences, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7639-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7639-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7641-2

  • Online ISBN: 978-94-009-7639-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics