Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 54))

Abstract

One of the first studies of bifurcation is due to Euler (1744), who treated the buckling of a column subjected to axial compression (the so-called Elastica). He considered the following boundary-value problem

$$\left\{ {\begin{array}{*{20}{c}} {\theta '' + \lambda \sin \theta = o} \\ {\theta '\left( o \right) = \theta '(1) = o} \\ \end{array} } \right.$$
(1)

where θ is the angle between the tangent to the column and the real axis, λ is the thrust applied and 1 is the length of the column:

fig. 1

Obviously θ=0 is a solution of (0.l) for any real λ.This means that the column remains straight in equilibrium. But it is not difficult to see that as λ exceeds π2 a new family of solutions appears and the column buckles.

Notes by E. Buzano and C. Canuto

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R. and Marsden, J.: Foundations of Mechanics, 2nd.ed., Benjamin, New York, 1978.

    Google Scholar 

  2. Alexander, J.C. and Yorke, J.A.: Global Bifurcation of Periodic Orbits, Amer. J. Math., 100 (1978), 263–292.

    Article  Google Scholar 

  3. Amann, H.: On the Existence of Positive Solutions of Nonlinear Elliptic Boundary-Value Problems, Indiana Univ. Math. J., 21 (1971), 125–146.

    Article  Google Scholar 

  4. Amman, H.: Ljusternik-Schnilermann Theory and Nonlinear Eigenvalue Problems, Math. Ann., 199 (1972), 55–72.

    Article  Google Scholar 

  5. Amann, H.: On the Number of Solutions of Nonlinear Equations in Ordered Banach Spaces, J. Funct Anal., 11 (1972), 346–384.

    Article  Google Scholar 

  6. Amann, H.: Nonlinear Operators in Ordered Banach Spaces and Some Applications to Nonlinear Boundary-Value Problems, Nonlinear Operators and the Calculus of Variations, 1–15, Lecture Notes in Math., vol. 543, Springer, Berlin, 1976.

    Google Scholar 

  7. Ambrosetti, A. and Rabinowitz, P.H.: Dual Variational Methods in Critical Points Theory and Applications, J. Fuct. Anal., 14 (1973), 349–381.

    Article  Google Scholar 

  8. Antman, S.S.: Bifurcation Problems for Nonlinearly Elastic Structures, Applications of Bifurcation Theory, P.H. Rabinowitz (ed.), 73–125, Academic Press, New York, 1977.

    Google Scholar 

  9. Arnold, V.I.: Lectures on Bifurcation and Versal Families,Russian Math. Surveys, 27 (1972), 54–123.

    Article  Google Scholar 

  10. Auchmuty, J.F.G. and Nicolis, J.: Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations I, Bull.. Math. Biol., 37 (1973), 323–365.

    Google Scholar 

  11. Berger, M.S.: On Von Kárman’s Equations and the Buckling of a Thin Elastic Plate I, Comm. Pure Appl. Math., 20 (1967), 687–719.

    Google Scholar 

  12. Berger, M.S.: Nonlinearity and Functional Analysis, Academic Press, New York, 1977.

    Google Scholar 

  13. Berger, M.S. and Fife P.C.: On Von Kárman’s Equations and the Buckling of a Thin Elastic Plate II, Comm. Pure Appl. Math., 21 (1968), 227–247.

    Google Scholar 

  14. Böhme, R.: Die Lösung der Verzweigungsgleichungen für nichlineare Eigenwertproblem, Math. Z., 127 (1972), 105–126.

    Google Scholar 

  15. Cartan, H.: Differential Calculus, Hermann, Paris; Houghton, Boston, 1971.

    Google Scholar 

  16. [16]Chafee, : The Bifurcation of one or more Closed Orbits from an Equilibrium Point of an Autonomous Differential Equation, J. Diff. Eg., 4 (1968), 661–679.

    Google Scholar 

  17. Chandrasekar, S.: Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, Oxford, 1961.

    Google Scholar 

  18. Chow, S.N., Hale, J.K. and Mallet-Paret, J.: Application of Generic Bifurcation I and II, Arch. Rat. Mech. Anal., 59. (1975), 159–188.

    Google Scholar 

  19. Chow, S.N., Hale, J.K. and Mallet-Paret, J.: Application of Generic Bifurcation I and II, Arch. Rat. Mech. Anal., 62 (1976), 209–235.

    Google Scholar 

  20. Coles, D.: Transition in Circular Couette Flow, J. Fluid Mech., 21 (1965), 385–425.

    Google Scholar 

  21. Crandall, M.G.: An Introduction to Constructive Aspects of Bifurcation and the Implicit Function Theorem, Application of Bifurcation Theory, P.H. Rabonowitz (ed.), 1–35, Academic Press, New York, 1977.

    Google Scholar 

  22. Crandall, M.G. and Rabinowitz, P.H.: Bifurcation from Simple Eigenvalues, J. Funct. Anal., 8 (1971)9 321–340.

    Google Scholar 

  23. Crandall, M.G. and Rabinowitz, P.H.: Bifurcation, Perturbation of Simple Eigenvalues, and Linearized Stability, Arch. Rat. Mech. Anal., 52 (1973), l6l–l80.

    Google Scholar 

  24. Crandall, M.G. and Rabinowitz, P.H.: The Principle of Exchange of Stability, Dynamical Systems, A.R. Bednarek and L. Cesari (eds. ), Academic Press, 1977.

    Google Scholar 

  25. Crandall, M.G. and Rabinowitz, P.H.: The Principle of Exchange of Stability, Dynamical Systems, A.R. Bednarek and L. Cesari (eds. ), Academic Press, 1977.

    Google Scholar 

  26. Dancer, E.N.: Global Solution Branches for Positive Mappings, Arch. Rat. Mech. Anal., 52 (1973), 181–192.

    Google Scholar 

  27. Dayey, A., Di Prima, R.C. And Stuart, J.T.: On the Instability of Taylor Vortices, J. Fluid Mech., 31 (1968), 17 –52.

    Google Scholar 

  28. Ekeland, I. and Lasry, J.M.: Nombre de solutions páriodiques des áquations de Hamilton, C.R. Acad. Sc. Paris, 288 Sárie A (1979), 209–211.

    Google Scholar 

  29. Fadell, E.R. and Rabinowitz, P.H.: Bifurcation for Odd Potential Operators and an Alternative Topological Index, J. Funct. Anal., 26 (1977), 48–67.

    Google Scholar 

  30. Fadell, E.R. and RABINOWITZ, P.H.: Generalized Cohomological Index Theories for Lie Groups Actions with an Application to Bifurcation Questions for Hamiltonian Systems, Inv. Math., 45 (1978), 139–175.

    Google Scholar 

  31. Fife, P.C.: The Benard Problem for Generalized Fluid Dynamical Equations and Remarks on Boussinesq Equations, Indiana Univ. Math. J., 20 (1970), 303–326.

    Google Scholar 

  32. Fife, P.C.:Branching Phenomena in Fluid Dynamics and Chemical Reaction-Diffusion Theory, Eigenvalues of Nonlinear Problems, G. Prodi (ed.), 23-83, Edizioni Cremonese, Roma, 1977.

    Google Scholar 

  33. Fife, P.C.: Stationary Patterns for Reaction Diffusion Equations.,Nonlinear Diffusion, W.E. Fitzgibhon and H.F. Walker (eds.), Research Notes in Math., Pitman, London,1977.

    Google Scholar 

  34. Fife, P.C.: Asymptotic States for Equations of Reaction and Diffusion, Bull. Am. Math. Soc., 84 (1978), 693–726.

    Google Scholar 

  35. Fife, P.C.: Mathematical Aspects of Reaction-Diffusion Systems, Lecture Notes in Biomath., Vol. 28, Springer, Berlin, 1979.

    Google Scholar 

  36. Fife, P.C. and JOSEPH, D.: Existence of Convective Solutions of the Generalized Benard Problem, Arch. Rat. Mech.Anal., 33 (1969), 116–138.

    Google Scholar 

  37. Friedman, A.: Partial Differential Equations, Holt, Reinehart and Winston, Inc., New York, 1969.

    Google Scholar 

  38. Friedrichs, K.O. and Stoker, J.: The Nonlinear Boundary-Value Problem of the Buckled Plate, Am. J. Math., 63 (1941), 839–888.

    Google Scholar 

  39. Golubitsky, M. and Schaeffer, D.: A Theory for Imperfect Bifurcation Via Singularity Theory, Comm. Pure Appl. Math., 32 (1978), 21–98.

    Google Scholar 

  40. Hartman, R.: Ordinary Differential Equations, John Wiley,New York, 1964.

    Google Scholar 

  41. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, University of Kentucky Lecture Notes, 1974.

    Google Scholar 

  42. Herschkowitz, H. and Kaufman, M.: Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations II, Bull. Math. Biol., 37. (1975), 589–636.

    Google Scholar 

  43. Hopf, E.: Abzweigung einer periodischen Losung von einer stationaren Losung eines Differentialsystems, Ber. Math- Phys. Sachsische Academie der Wissenschaften Leiptzig, 94 (1942), 1–22

    Google Scholar 

  44. I00SS, G.: Existence et stabilite de la solution periodique secondaire intervenant dans les problemes dfevolution du type Navier-Stokes, Arch. Rat. Mech. Anal., 47 (1972), 301–329.

    Google Scholar 

  45. I00SS, G.: Stabilite et bifurcation, Dept. of Math., Univ. of Paris Sud, Orsay, 1973.

    Google Scholar 

  46. IOOSS, G.: Bifurcation of a Periodic Solution of the Navier- Stokes Equations into an Invariant Torus, Arch. Rat.Mech. Anal., 58 (1975), 35–56.

    Google Scholar 

  47. IOOSS, G.: Secondary Bifurcation of a Steady Solution into an Invariant Torus for Evolution Problems of Navier-Sto- kes Type, Applications of Methods of Functional Analysis to Problems in Mechanics, 354–365, Lecture Notes in Math., vol. 503, Springer, Berlin, 1976.

    Google Scholar 

  48. IOOSS, G.: Direct Bifurcation of a Steady Solution of the Navier-Stokes Equations into an Invariant Torus, Turbulence and Navier-Stokes Equations, 113-120, Lectures Notes in Math., vol. 565, Springer, Berlin, 1976.

    Google Scholar 

  49. IOOSS, G.: Sur la deuxieme bifurcation d’une solution stationnaire de systeme du type Navier-Stokes, Arch. Rat. Mech. Anal., 64 (1977), 339–369.

    Google Scholar 

  50. IOOSS, G.: Bifurcation of Maps and Applications, North-Holand, Amsterdam, 1979-

    Google Scholar 

  51. Iudovich, V.I.: On the Origin of Convection, Prikl. Mat.Mek.(J. Appl. Math. Mech.), 30 (1966), 1193–1199.

    Google Scholar 

  52. Iudovich, V.I.: Investigation of Auto-oscillations of a Continuous Medium Occurring at Loss of Stability of a Stationary Mode, Prikl. Mat. Mek. (J. Appl. Math.Mech.), 36 (1972), 450–459.

    Google Scholar 

  53. Joseph, D.: Stability of Convection in Containers of Arbitrary Shape, J. Fluid Mech., 47 (1971), 257–282.

    Google Scholar 

  54. Joseph, D.: Stability of Fluid Motions I, II, Springer,Berlin, 1976.

    Google Scholar 

  55. Joseph, D. and Nield, D.A.: Stability of Bifurcating Time-periodic and Steady Solutions of Arbitrary Amplitude, Arch. Rat. Mech. Anal.,58 (1975), 369–380.

    Google Scholar 

  56. Joseph, D. and Sattinger D.H.: Bifurcating Time-periodic Solutions and their Stability, Arch. Rat. Mech. Anal., 45, (1972), 79–109.

    Google Scholar 

  57. Kato, T.: Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

    Google Scholar 

  58. Keller, J.B. and Antman, S. (eds.): Bifurcation Theory and Nonlinear Eigenvalue Problems, Benjamin, New York, 1969.

    Google Scholar 

  59. Kirchgässner,K. and Kielhofer, H.: Stability and Bifurcation in Fluid Dynamics, Rocky Mountain Math.J., 3. (1973), 275–318.

    Google Scholar 

  60. Kirchgässner, K. and Sorger, P.: Stability Analysis of Branching Solutions of the Navier-Stokes Equations, Proc. 12th Int. Cong. Appl. Mech., Stanford Univ., August 1968.

    Google Scholar 

  61. Kopell, N. and Howard, L.N.: Bifurcations under Nongeneric Conditions, Advances in Math., 13 (1974), 274–283.

    Google Scholar 

  62. Krasnoselskij, M.A.: Positive Solutions of Operator Equations, Nordhoff, Groningen, 1964.

    Google Scholar 

  63. Krasnoselskij, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1964.

    Google Scholar 

  64. Lebowitz, N.R.: Bifurcation and Stability Problems in Astrophysics, Applications of Bifurcation Theory, P.H. Rabino- witz-(ed.), 259–284, Academic Press, New York, 1977.

    Google Scholar 

  65. Liapunov, M.A.: Probleme generale de, la stabilite du mouve- ment, Annals of Mathematical Studies, 17, Princeton, 1949.

    Google Scholar 

  66. Marino, A.: La biforcazione nel caso variazionale, Conf. Sem. Mat, dell’Univ. Bari, 132 (1977).

    Google Scholar 

  67. Marsden, J.: Qualitative Methods in Bifurcation Theory, Bull. Am. Math. Soc., 84 (1978), 1125–1148.

    Google Scholar 

  68. Marsden, J. and Mccracken, M.: The Hopf Bifurcation and its Applications, Springer, Berlin, 1976.

    Google Scholar 

  69. Matkowsky, B.J. and Reiss, E.L.: Singular Perturbations of Bifurcations, SIAM J. Appl. Math., 33 (1977), 230–255.

    Google Scholar 

  70. Moser, J.: Periodic Orbits Near an Equilibrium and a Theorem by Alan Weinstein, Comm. Pure Appl. Math., 29 (1976), 727–747.

    Google Scholar 

  71. Nemytskii, V.V. and Stephanov, V.V.: Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, I960.

    Google Scholar 

  72. Niremberg, L.: Topics in Nonlinear Functional Analysis, Courant Institute Lecture Notes, Courant Institute of Mathematical Sciences, 1974.

    Google Scholar 

  73. Palais, R.S.: Critical Point Theory and the Minimax Principle, Proc. Symp. Pure Math., 15, Am. Math. Soc., 185–212, Providence, R.I., 1970.

    Google Scholar 

  74. Prodi, G.(ed.): Eigenvalues of Nonlinear Problems, C.I.M.E., Edizioni Cremonese, Roma, 1973.

    Google Scholar 

  75. Prodi, G. and Ambrosetti, A.: Analisi Non Lineare, Scuola Normale Superiore, Pisa, 1973.

    Google Scholar 

  76. Rabinowitz, P.H.: Existence and Nonuniqueness of Rectangular Solutions of the Benard Problem, Arch. Rat. Mech. Anal., 24 (1968), 32–57.

    Google Scholar 

  77. Rabinowitz, P.H.: Some Global Results for Nonlinear Eigenvalue Problems, J. Funct. Anal., 7 (1971), 487–513.

    Google Scholar 

  78. Rabinowitz, P.H.: Some Aspects of Nonlinear Eigenvalue Problems, Rocky Mountain Math. J., 3 (1973), l6l–202.

    Google Scholar 

  79. Rabinowitz, P.H.: Variational Methods for Nonlinear Eigenvalue Problems, Eigenvalue of Nonlinear Problems, G. Prodi (ed.), l4l–195, C.I.M.E., Edizioni Cremonese, Roma, 1975.

    Google Scholar 

  80. Rabinowitz, P.H.: Survey of Bifurcation Theory, Dynamical Systems, An International Symposium, vol. I, L. Cesari, J.K. Hale and J.P. LaSalle (eds.), 83~96, Academic Press, New York, 1976.

    Google Scholar 

  81. Rabinowitz, P.H.: (ed.) Applications of Bifurcation Theory, Academic Press, New York, 1977.

    Google Scholar 

  82. Rabinowitz, P.H.: A Bifurcation Theorem for Potential Operators, J. Funct. Anal., 25 (1977), 412–424.

    Google Scholar 

  83. Rabinowitz, P.H.: Periodic Solutions of Hamiltonian Systems, Comm. Pure Appl. Math., 31 (1978), 157–184.

    Google Scholar 

  84. Rabinowitz, P.H.: A Variational Method for Finding Periodic Solutions of Differential Equations, Nonlinear Evolution Equations, M.G. Crandall (ed.), 225–251, Academic Press, New York, 1978.

    Google Scholar 

  85. Ruelle, D. and Takens, F.: On the Nature of Turbulence,Comm. Math. Phys., 20 (1971), 167–192,

    Google Scholar 

  86. Ruelle, D. and Takens, F.: On the Nature of Turbulence,Comm. Math. Phys., 23 (1971), 343–344.

    Google Scholar 

  87. Sather, D.: Branching of Solutions of Nonlinear Equations in Hilbert Spaces, Rocky Mountain Math. J., 3. (1973), 203–250.

    Google Scholar 

  88. Sattinger, D.H.: Bifurcation of Periodic Solutions of the Navier-Stokes Equations, Arch. Rat. Mech. Anal., 4l(l97l), 66–80.

    Google Scholar 

  89. Sattinger, D.H.: Topics in Stability and Bifurcation Theory, Lecture Notes in Math., vol. 309, Springer, Berlin,1973.

    Google Scholar 

  90. Schwartz, J.: Nonlinear Functional Analysis, Lecture Notes New York Univ., Gordon and Breach, New York, 1969.

    Google Scholar 

  91. Stakgold, I.: Branching of Solutions of Nonlinear Equations, SIAM Review, 13 (l97l), 289–332.

    Google Scholar 

  92. Stoker, J.J.: Nonlinear Elasticity, Gordon and Breach, New York, 1968.

    Google Scholar 

  93. Thom, R.: Structural Stability and Morphogenesis, Benjamin, New York, 1972.

    Google Scholar 

  94. Turner, R.E.L.: Transversality and Cone Maps, Arch. Rat. Mech. Anal., 58 (1975), 151–179.

    Google Scholar 

  95. Vainberg, M.M.: Variational Methods in the Study of Nonlinear Operators, Holden-Day, San Francisco, 1964.

    Google Scholar 

  96. Vainberg, M.M. and Trenogin, V.A.: The Method of Liapunov- Schmidt in the Theory of Nonlinear Equations and their Further Development, Russian Math. Surveys, 17 (1962), 1–60.

    Article  Google Scholar 

  97. Vainberg, M.M. and Trenogin, V.A.: Theory of Branching of Solutions of Nonlinear Equations, Monographs and Textbooks on Pure and Applied Math., Nordhoff International Publisher, Leyden, 1974.

    Google Scholar 

  98. Vega, J.M.: A Constructive Approach to the Problem of Bifurcation from Simple Eigenvalues, Applied Mathematics,Technical Report No. 7808Department of Engeneering Sciences and Applied Math., Northwestern University, Evanston, 111., 1979.

    Google Scholar 

  99. Weinstein, A.: Normal Modes for Nonlinear Hamiltonian Systems, Inv. Math., 20 (1973), 47–57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company

About this paper

Cite this paper

Crandall, M.G., Rabinowitz, P.H. (1980). Mathematical Theory of Bifurcation. In: Bardos, C., Bessis, D. (eds) Bifurcation Phenomena in Mathematical Physics and Related Topics. NATO Advanced Study Institutes Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9004-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9004-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9006-7

  • Online ISBN: 978-94-009-9004-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics