Skip to main content

The Unitary Group Formulation of the Many-Electron Problem

  • Conference paper
Horizons of Quantum Chemistry

Abstract

The unitary group formulation is a viable alternative to the Slater determinant and second quantized methods when the Hamiltonian is spinfree. Here the Hamiltonian is expressed as a second degree polynomial in the infinitesimal generators of U(ρ) where p is the number of spatial (spin-free) orbitals. Each irreducible space of U(ρ) is invariant under this Hamiltonian and is uniquely characterized by a Young diagram which, for the Pauli allowed spaces, supplies both particle and spin quantum numbers. Each irreducible space is spanned by a set of orthonormal Gel’fand states and the Hamiltonian matrix elements are conveniently calculated by the graphical unitary approach (GUGA). The many-body approximation theories (single and multiconfiguration restricted Hartree Fock, RPA, perturbation, coupled cluster and effective Hamiltonian theories) have been given a unitary group formulation

Supported by R. A. Welch Foundation of Houston, Texas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matsen, F. A.: 1974, Int. J. Quantum Chem. S8, pp. 379–388

    Google Scholar 

  2. See also: Harter, W. G.: 1973, Phys. Rev. A 8, pp. 2819–2827

    Google Scholar 

  3. Harter, W. G. and Patterson, C. W.: 1976, Phys. Rev. A13, pp. 1067–1076

    Google Scholar 

  4. Gel’fand, I. M., and Graev, M. I.: 1967, Am. Math. Soc. Transl. 64, pp. 116–216

    Google Scholar 

  5. Moshinsky, M.: 1968, “Group Theory and the Many-Body Problem,” Gordon and Breach, New York

    Google Scholar 

  6. Biedenharn, L. C.: 1963, J. Math. Phys. 4, pp. 436–445

    Article  Google Scholar 

  7. Paldus, J.: 1976, Theo. Chem.: Adv. Perspect. 2, pp. 131–290

    CAS  Google Scholar 

  8. Shavitt, I.: 1978, Int. J. Quantum Chem. S12, pp. 5–32. : 1979, unpublished

    Google Scholar 

  9. Matsen, F. A.: 1978, Adv. in Quantum Chem. 2, pp. 223–250

    Article  Google Scholar 

  10. Matsen, F. A.: 1964, Adv. in Quantum Chem. 1, pp. 59–114

    Article  CAS  Google Scholar 

  11. Matsen, F. A.: 1976, Int. J. Quantum Chem. 10, pp. 525–542

    Article  CAS  Google Scholar 

  12. Gilmore, R.: 1974, “Lie Groups, Lie Algebras, and Some of their Applications,” Wiley, New York

    Google Scholar 

  13. Wybourne, B.: 1970, “Symmetry Principles and Atomic Spectroscopy,” Wiley, New York

    Google Scholar 

  14. Brooks, B. R. and Schaefer, H. F.: 1979, J. Chem. Phys. 70, pp. 5092–5106

    Article  CAS  Google Scholar 

  15. Matsen, F. A. and Nelin, C. J.: 1979, Int. J. Quantum Chem. 15, pp. 751–767

    Article  CAS  Google Scholar 

  16. Rowe, D. J.: 1970, “Nuclear Collective Motion,” Methuen, London

    Google Scholar 

  17. Thouless, D. J.: 1961, “The Quantum Mechanics of Many-Body Systems,” Academic, New York

    Google Scholar 

  18. Nelin, C. J.: 1979, Int. J. Quantum Chem., (in press)

    Google Scholar 

  19. See for example: Jørgensen, P.: 1975, Ann. Rev. Phys. Chem. 26, pp. 359–380

    Article  Google Scholar 

  20. Dunning, T. and McKoy, V.: 1967, J. Chem. Phys. 47, pp. 1735–1747

    Article  CAS  Google Scholar 

  21. Dalgaard, E. and Jørgensen, P.: 1978, J. Chem. Phys. 69, pp. 3833–3844

    Article  CAS  Google Scholar 

  22. Matsen, F. A. and Nelin, C. J.,: 1979, Int. J. Quantum Chem. (to be submitted)

    Google Scholar 

  23. Yeager, D. L. and Jørgensen, P.: 1979, J. Chem. Phys. 71, pp. 755–760

    Article  CAS  Google Scholar 

  24. Roothaan, C. C. J., Detrich, J. and Hopper, D. G.: 1979, Int. J. Quantum Chem. (in press)

    Google Scholar 

  25. Bloch, C.: 1958, Nucl. Phys. 6, pp. 329–352

    Article  CAS  Google Scholar 

  26. Lindgren, I.: 1978, Int. J. Quantum Chem. S12, pp. 33–57

    Google Scholar 

  27. Brandow, B. H.: 1979, Int. J. Quantum Chem. 15, pp. 207–242

    Article  CAS  Google Scholar 

  28. Mateen, F. A.: 1979, Int. J. Quantum Chem. (in press)

    Google Scholar 

  29. Primas, H.: 1963, Rev. Mod. Phys. 35, pp. 710–714

    Article  Google Scholar 

  30. Klein, D. J. (private communication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company

About this paper

Cite this paper

Matsen, F.A., Nelin, C.J. (1980). The Unitary Group Formulation of the Many-Electron Problem. In: Fukui, K., Pullman, B. (eds) Horizons of Quantum Chemistry. Académie Internationale Des Sciences Moléculaires Quantiques / International Academy of Quantum Molecular Science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9027-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9027-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9029-6

  • Online ISBN: 978-94-009-9027-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics