Skip to main content

Shot Noise for Entangled and Spin-Polarized Electrons

  • Chapter
Quantum Noise in Mesoscopic Physics

Part of the book series: NATO Science Series ((NAII,volume 97))

Abstract

We review our recent contributions on shot noise for entangled electrons and spinpolarized currents in novel mesoscopic geometries. We first discuss some of our recent proposals for electron entanglers involving a superconductor coupled to a double dot in the Coulomb blockade regime, a superconductor tunnel-coupled to Luttinger-liquid leads, and a triple-dot setup coupled to Fermi leads. We briefly survey some of the available possibilities for spin-polarized sources. We use the scattering approach to calculate current and shot noise for spin-polarized currents and entangled/unentangled electron pairs in a novel beam-splitter geometry with a local Rashba spinorbit (s-o) interaction in the incoming leads. For single-moded incoming leads, we find continuous bunching and antibunching behaviors for the entangled pairs — triplet and singlet — as a function of the Rashba rotation angle. In addition, we find that unentangled triplets and the entangled one exhibit distinct shot noise; this should allow their identification via noise measurements. Shot noise for spin-polarized currents shows sizable oscillations as a function of the Rashba phase. This happens only for electrons injected perpendicular to the Rashba rotation axis; spin-polarized carriers along the Rashba axis are noiseless. The Rashba coupling constant α is directly related to the Fano factor and could be extracted via noise measurements. For incoming leads with s-o induced interbandcoupled channels, we find an additional spin rotation for electrons with energies near the crossing of the bands where interband coupling is relevant. This gives rise to an additional modulation of the noise for both electron pairs and spin-polarized currents. Finally, we briefly discuss shot noise for a double dot near the Kondo regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Schottky, Ann. Phys. 57 (1918) 541.

    Article  Google Scholar 

  2. Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

    Article  ADS  Google Scholar 

  3. D. Loss and E.V. Sukhorukov, Phys. Rev. Lett. 84, 1035 (2000), cond-mat/9907129.

    Article  ADS  Google Scholar 

  4. G. Burkard, D. Loss, and E.V. Sukhorukov, Phys. Rev. B 61,R16303 (2000), condmat/9906071. For an early account see D. P. DiVincenzo and D. Loss, J. Magn. Magn. Mat. 200, 202 (1999), cond-mat/9901137.

    Article  ADS  Google Scholar 

  5. W. D. Oliver et al., in Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, vol. 559 of NATO ASI Series C: Mathematical and Physical Sciences, eds. I. O. Kulik and R. Ellialtioglu (Kluwer, Dordrecht, 2000), pp. 457-466.

    Google Scholar 

  6. F. Taddei and R. Fazio, Phys. Rev. B 65, 075317 (2002).

    Article  ADS  Google Scholar 

  7. J. C. Egues, G. Burkard, and D. Loss, to appear in the Journal of Superconductivity; condmat/0207392.

    Google Scholar 

  8. J. C. Egues, G. Burkard, and D. Loss, Phys. Rev. Lett. 89, 176401 (2002); cond-mat/0204639.

    Article  ADS  Google Scholar 

  9. B. R. Bulka et al. Phys. Rev. B 60,12246 (1999).

    Article  ADS  Google Scholar 

  10. F. G. Brito, J. F. Estanislau, and J. C. Egues, J. Magn. Magn. Mat. 226-230,457 (2001).

    Article  ADS  Google Scholar 

  11. K.M. Souza, J. C. Egues, and A. P. Jauho, cond-mat/0209263.

    Google Scholar 

  12. J. J. Sakurai, Modern Quantum Mechanics, San Fu Tuan, Ed., (Addison-Wesley, New York, 1994); (Ch. 3, p. 223). See also J. I. Cirac, Nature 413, 375 (2001).

    Google Scholar 

  13. Semiconductor Spintronics and Quantum Computation, Eds. D. D. Awschalom, D. Loss, and N. Samarth (Springer, Berlin, 2002).

    Google Scholar 

  14. P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. B 63,165314 (2001); cond-mat/0009452.

    Article  ADS  Google Scholar 

  15. D. S. Saraga and D. Loss, cond-mat/0205553.

    Google Scholar 

  16. R. Fiederling et al., Nature 402, 787 (1999); Y. Ohno et al., Nature 402, 790 (1999).

    Article  ADS  Google Scholar 

  17. See J. C. Egues Phys. Rev. Lett. 80, 4578 (1998) and J. C. Egues et al. Phys. Rev. B 64,195319 (2001) for ballistic spin filtering in semimagnetic heterostruc ures.

    Article  ADS  Google Scholar 

  18. P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000), condmat/0003089.

    Article  ADS  Google Scholar 

  19. P. Recher and D. Loss, Phys. Rev. B 65, 165327 (2002), cond-mat/0112298.

    Article  ADS  Google Scholar 

  20. V.N. Golovach and D. Loss, cond-mat/0109155.

    Google Scholar 

  21. R. C. Liu et al., Nature (London), 391,263 (1998).

    Article  ADS  Google Scholar 

  22. M. Henny et al., Science 284,296 (1999); W. D. Oliver et al., Science 284, 299 (1999). See also M. Büttiker, Science 284, 275 (1999).

    Article  ADS  Google Scholar 

  23. G. Fève et al. (cond-mat/0108021) also investigate transport in a beam splitter configuration. These authors assume a “global” s-o interaction and formulate the scattering approach using Rashba states in single-moded leads.

    Google Scholar 

  24. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  ADS  Google Scholar 

  25. L.P. Kouwenhoven, G. Schön, L.L. Sohn, Mesoscopic Electron Transport, NATO ASI Series E: Applied Sciences-Vol.345, 1997, Kluwer Academic Publishers, Amsterdam.

    Google Scholar 

  26. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998), cond-mat/9701055.

    Article  ADS  Google Scholar 

  27. M.-S. Choi, C. Bruder, and D. Loss, Phys. Rev. B 62, 13569 (2000); cond-mat/0001011.

    Article  ADS  Google Scholar 

  28. C. Bena, S. Vishveshwara, L. Balents, and M.P.A. Fisher, Phys. Rev. Lett. 89, 037901 (2002).

    Article  ADS  Google Scholar 

  29. G.B. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B 24, 287 (2001).

    Article  ADS  Google Scholar 

  30. R. Mélin, cond-mat/0105073.

    Google Scholar 

  31. V. Bouchiat et al., cond-mat/0206005.

    Google Scholar 

  32. W.D. Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett. 88, 037901 (2002).

    Article  ADS  Google Scholar 

  33. S. Bose and D. Home, Phys. Rev. Lett. 88, 050401 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  34. In principle, an entangler producing entangled triplets or orbital entanglement would also be desirable.

    Google Scholar 

  35. This condition reflects energy conservation in the Andreev tunnelling event from the SC to the two QDs.

    Google Scholar 

  36. This reduction factor of the current I 2 compared to the resonant current I 1 reflects the energy cost in the virtual states when two electrons tunnel via the same QD into the same Fermi lead and are given by U and/or Δ. Since the lifetime broadenings γ1 and γ2 of the two QDs 1 and 2 are small compared to U and Δ such processes are suppressed.

    Google Scholar 

  37. P. Recher and D. Loss, Journal of Superconductivity: Incorporating Novel Magnetism 15(1): 49–65, February 2002; cond-mat/0205484.

    Google Scholar 

  38. A.F. Volkov, P.H.C. Magne, B.J. van Wees, and T.M. Klapwijk, Physica C 242, 261 (1995).

    Article  ADS  Google Scholar 

  39. M. Kociak, A.Yu. Kasumov, S. Guron, B. Reulet, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, L. Vaccarini, and H. Bouchiat, Phys. Rev. Lett. 86, 2416 (2001).

    Article  ADS  Google Scholar 

  40. M. Bockrath et al., Nature 397, 598 (1999).

    Article  ADS  Google Scholar 

  41. R. Egger and A. Gogolin, Phys. Rev. Lett. 79, 5082 (1997); R. Egger, Phys. Rev. Lett. 83, 5547 (1999).

    Article  ADS  Google Scholar 

  42. C. Kane, L. Balents, and M.P.A. Fisher, Phys. Rev. Lett. 79, 5086 (1997).

    Article  ADS  Google Scholar 

  43. L. Balents and R. Egger, Phys. Rev. B, 64 035310 (2001).

    Article  ADS  Google Scholar 

  44. For a review see e.g. HJ. Schulz, G. Cuniberti, and P. Pieri, cond-mat/9807366; or J. von Delft and H. Schoeller, Annalen der Physik, Vol. 4, 225-305 (1998).

    Google Scholar 

  45. The interaction dependent constants A b are of order one for not too strong interaction between electrons in the LL but are decreasing when interaction in the LL-leads is increased [19]. Therefore in the case of substantially strong interaction as it is present in metallic carbon nanotubes, the pre-factors A b can help in addition to suppress I 2

    Google Scholar 

  46. Since γp-> γP+, it is more probable that two electrons coming from the same Cooper pair travel in the same direction than into different directions when injected into the same LL-lead.

    Google Scholar 

  47. In order to have exclusively singlet states as an input for the beamsplitter setup, it is important that the LL-leads return to their spin ground-state after the injected electrons have tunnelled out again into the Fermi leads. For an infinite LL, spin excitations are gapless and therefore an arbitrary small bias voltage μ between the SC and the Fermi liquids gives rise to spin excitations in the LL. However, for a realistic finite size LL (e.g. a nanotube), spin excitations are gapped on an energy scale ∼ ħ VF/L, where L is the length of the LL. Therefore, if κBT,μ < ħVF/L only singlets can leave the LL again to the Fermi leads, since the total spin of the system has to be conserved. For metallic carbon nanotubes, the Fermi velocity is ∼ 106m/s, which gives an excitation gap of the order of a few meV for L ∼ μm; this is large enough for our regime of interest.

    Google Scholar 

  48. A singlet-triplet transition for the ground state of a quantum dot can be driven by a magnetic field; see S. Tarucha et al., Phys. Rev. Lett. 84,2485 (2000).

    Article  ADS  Google Scholar 

  49. This symmetric setup of the charging energy U is obtained when the gate voltages are tuned such that the total Coulomb charging energies in D c are equal with zero or two electrons.

    Google Scholar 

  50. K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996).

    MATH  Google Scholar 

  51. T.H. Oosterkamp et al., Nature (London) 395,873 (1998); T. Fujisawa et al., Science 282,932 (1998).

    Article  ADS  Google Scholar 

  52. J.M. Kikkawa and D.D. Awschalom, Phys. Rev. Lett. 80,4313 (1998).

    Article  ADS  Google Scholar 

  53. I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and D. D. Awschalom, Phys. Rev. Lett. 84,1015 (2000); I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, Nature 411,770 (2001).

    Article  ADS  Google Scholar 

  54. M. Johnsson and R. H. Silsbee, Phys. Rev. Lett. 55,1790 (1985); M. Johnsson and R. H. Silsbee, Phys. Rev. B 37, 5326 (1988); M. Johnsson and R. H. Silsbee, Phys. Rev. B 37, 5712 (1988).

    Article  ADS  Google Scholar 

  55. F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature 410, 345 (2001); F. J. Jedema, H. B. Heersche, J. J. A. Baselmans, and B. J. van Wees, Nature 416, 713 (2002).

    Article  ADS  Google Scholar 

  56. In addition, for fully spin-polarized leads the device can act as a single spin memory with read-in and read-out capabilities if the dot is subjected to a ESR source.

    Google Scholar 

  57. This is true as long as the Zeeman splitting in the leads is much smaller than their Fermi energies.

    Google Scholar 

  58. H.-A. Engel and D. Loss, Phys. Rev. B 65, 195321 (2002), cond-mat/0109470.

    Article  ADS  Google Scholar 

  59. S. Kawabata, J. Phy. Soc. Jpn. 70, 1210 (2001).

    Article  ADS  Google Scholar 

  60. N.M. Chtchelkatchev, G. Blatter, G.B. Lesovik, and T. Martin, cond-mat/0112094.

    Google Scholar 

  61. M. Büttiker, Phys. Rev. B 46, 12485 (1992); Th. Martin and R. Landauer, Phys. Rev. B 45,1742 (1992). For a recent comprehensive review on shot noise, see Ref. [2].

    Article  ADS  Google Scholar 

  62. Our noise definition here differs by a factor of two from that in the review article by Blanter and Büttiker (Ref. [2]); these authors define their power spectral density of the noise with a coefficient two in front (see definition following Eq. (49) and footnote 4 in Ref. [2]). We use a standard Fourier transform (no factor of two in front) to define the noise spectral density.

    Google Scholar 

  63. For a discrete energy spectrum we need to insert a density-of-states factor v in the current and noise definitions; see Ref. [4].

    Google Scholar 

  64. Note that the uncorrelated-beam case here refers to a beam splitter configuration with only one of the incoming leads “open”. This is an important point since a beam splitter is noiseless for (unpolarized) uncorrelated beams in both incoming leads.

    Google Scholar 

  65. G. Engels et al. Phys. Rev. B 55, R1958 (1997); J. Nitta et al., Phys. Rev. Lett. 78, 1335 (1997); D. Grundler Phys. Rev. Lett. 84,6074 (2000); Y. sato et al. J. Appl. Phys. 89,8017 (2001).

    Article  ADS  Google Scholar 

  66. A. V. Moroz and C. H. W. Barnes, Phys. Rev. B 60, 14272 (1999); F. Mireles and G. Kirczenow, ibid. 64,024426 (2001); M. Governale and U. Zülicke, Phys. Rev. B 66 073311 (2002).

    Article  ADS  Google Scholar 

  67. G. Lommer et al., Phys. Rev. Lett. 60,728 (1988), G. L. Chen et al., Phys. Rev. B 47, 4084 (R) (1993), E. A. de Andrada e Silva et al., Phys. Rev. B 50,8523 (1994), and F. G. Pikus and G. E. Pikus Phys. Rev. B 51,16928 (1995).

    Article  ADS  Google Scholar 

  68. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39,78 (1984).

    ADS  Google Scholar 

  69. L. W. Molenkamp et al., Phys. Rev. B 64, R121202 (2001); M. H. Larsen et al., ibid. 66,033304 (2002).

    Article  ADS  Google Scholar 

  70. The Rashba-active region in lead 1 is (supposed to be) electrostatically induced. This implies that there is no band-gap mismatch between the Rashba region and the adjacent regions in lead 1 due to materials differences. There is, however, a small mismatch arising from the Rashba energy ∈r; this is the amount the Rashba bands are shifted down with respect to the bands in the absence of s-o orbit in the channel. Since typically ∈R ≪ εF, we find that the transmission is indeed very close to unity (see estimate in Ref. [8]).

    Google Scholar 

  71. Note that the velocity operator is not diagonal in the presence of the Rashba interaction.

    Google Scholar 

  72. J. C. Egues, G. Burkard, and D. Loss, cond-mat/0209692.

    Google Scholar 

  73. In the absence of the s-o interaction, we assume the wire has two sets of spin-degenerate parabolic bands for each κ vector. In the presence of s-o interaction but neglecting s-o induced interband coupling, there is a one-to-one correspondence between the parabolic bands with no spin orbit and the Rashba bands; hence they can both be labelled by the same indices.

    Google Scholar 

  74. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Ch. 9. (Holt, Rinehart, and Winston, New York, 1976).

    Google Scholar 

  75. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).

    Article  ADS  Google Scholar 

  76. L. P. Kouwenhoven, private communication.

    Google Scholar 

  77. L. I. Glazman and M.E. Raikh, JETP Lett. 47, 452 (1988); T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).

    ADS  Google Scholar 

  78. Y. Meir and A. Golub, Phys. Rev. Lett. 88, 116802 (2002).

    Article  ADS  Google Scholar 

  79. F. Yamaguchi and K. Kawamura, Physica B 227, 116 (1996).

    Article  ADS  Google Scholar 

  80. A. Schiller and S. Hershfield, Phys. Rev. B 58, 14978 (1998).

    Article  ADS  Google Scholar 

  81. G. Burkard, D. Loss, and D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999), cond-mat/9808026.

    Article  ADS  Google Scholar 

  82. W. Izumida and O. Sakai, Phys. Rev. B 62, 10260 (2000).

    Article  ADS  Google Scholar 

  83. A. Georges and Y. Meir, Phys. Rev. Lett. 82, 3508 (1999).

    Article  ADS  Google Scholar 

  84. T. Aono and M. Eto, Phys. Rev. B 63, 125327 (2001).

    Article  ADS  Google Scholar 

  85. I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. B 52, 9528 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Egues, J.C. et al. (2003). Shot Noise for Entangled and Spin-Polarized Electrons. In: Nazarov, Y.V. (eds) Quantum Noise in Mesoscopic Physics. NATO Science Series, vol 97. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0089-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0089-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1240-2

  • Online ISBN: 978-94-010-0089-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics