Skip to main content

Microbial Aspects in Bioremediation of Soils Polluted by Polyaromatic Hydrocarbons

  • Chapter
Biotechnology for the Environment: Strategy and Fundamentals

Part of the book series: Focus on Biotechnology ((FOBI,volume 3A))

Abstract

Polyaromatic hydrocarbons (PAHs) are ubiquitous pollutants found in high concentrations at industrial sites associated with petroleum, coal tar, gas production and wood preservation industries. Due to their carcinogenic and mutagenic properties, PAHs are considered as environmental priority pollutants. They are stable and recalcitrant in soils as they are less easy to degrade than many other organic compounds. Though feasible, bioremediation of PAH-contaminated soils is seriously hampered by the low bioavailability of these compounds, making their removal a long and difficult process. Some PAH-degrading microorganisms seem however to be adapted to face the unfavourable physico chemical- properties of PAHs. Recent studies have shown that these peculiar organisms often belong to a discrete number of bacterial or fungal genera. In this review, both physico-chemical and metabolic aspects associated with the bacterial removal of PAHs from contaminated soils are discussed, as well as the perspectives for improving the associated biological technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson, S.C. and Jones, K.C. (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ. Pollut. 81, 229–249.

    Article  PubMed  CAS  Google Scholar 

  2. Enzminger, J.D. and Ahlert, R.C. (1987) Environmental fate of polynuclear aromatic hydrocarbons in coal tar. Environ. Techn. Letters. 8, 269–278.

    Article  CAS  Google Scholar 

  3. Menzie, C.A., Potocki, B.B. and Santodonato, J. (1992) Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 26, 1278–1284.

    Article  CAS  Google Scholar 

  4. NIH (1985) Survey of compounds which have been tested for carcinogenic activity, NIH publication, NIH Press, Washington DC.

    Google Scholar 

  5. Harvey, R.G. and Dunne, F.B. (1978) Multiple regions of metabolic activation of carcinogenic hydrocarbons. Nature 273, 566–568.

    Article  PubMed  CAS  Google Scholar 

  6. IARC (1984) International Agency for Research on Cancer, Monographs on the evaluation of the carcinogenic risk of chemical to humans, IARC Press, Lyon.

    Google Scholar 

  7. Ames, B.N., Mclann, J. and Yamashaki, E. (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31, 347–364.

    Article  PubMed  CAS  Google Scholar 

  8. Harvey, R. (1991) Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity, in: M.M. Coombs, J. Ashby, M. Hicks and H. Baxter (eds.) Cambridge Monographs on Cancer Research, Cambridge University Press, Cambridge, pp. 396.

    Google Scholar 

  9. White, K.L.J. (1986) An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons. Environ. Carcin. Revs. C4, 163–202.

    Article  CAS  Google Scholar 

  10. Keith, L.H. and Telliard, W.A. (1979) Priority pollutants. I. A perspective view. Environ. Sci. Technol. 13, 416–423.

    Article  Google Scholar 

  11. Murillo Mantilla, E. (1990) European Community policy with respect to soil contamination, Contaminated Land Workshop, (eds.),, Sevenage, UK.

    Google Scholar 

  12. Cerniglia, C.E. (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351–368.

    Article  CAS  Google Scholar 

  13. Dzombak, D.A. and Luthy, R.G. (1984) Estimating adsorption of polycyclic aromatic hydrocarbons on soil. Soil Science 137, 292–308.

    Article  CAS  Google Scholar 

  14. Kanaly, R.A. and Harayama, S. (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182, 2059–2067.

    Article  PubMed  CAS  Google Scholar 

  15. Andersson, B.E. and Henrysson, T. (1996) Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi. Appl. Microbiol. Biotechnol. 46, 647–652.

    Article  CAS  Google Scholar 

  16. Reddy, C.A. and D’Souza, T.M. (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol. Rev. 13, 137–152.

    Article  PubMed  CAS  Google Scholar 

  17. Cerniglia, C.E. (1981) Aromatic hydrocarbons: metabolism by bacteria, fungi, algae, Reviews in biochemical toxicology, Elsevier, Amsterdam.

    Google Scholar 

  18. Narro, M.L., Cerniglia, C.E., Van Baalen, C. and Gibson, D.T. (1992) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl. Environ. Microbiol. 58, 1351–1359.

    PubMed  CAS  Google Scholar 

  19. Engesser, K.H., Strubel, V., Christoglou, K., Fischer, P. and Rast, H.G. (1989) Dioxygenolytic cleavage of aryl ether bonds: 1, 10-dihydro-1, 10-dihydroxyfluoren-9-one, a novel arenedihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol. Lett. 53, 205–209.

    Article  PubMed  CAS  Google Scholar 

  20. Ellis, L.B., Hershberger, CD. and Wackett, L.P. (2000) The University of Minnesota Biocatalysis/Biodegradation database: microorganisms, genomics and prediction. Nucleic Acids Res. 28, 377–9.

    Article  PubMed  CAS  Google Scholar 

  21. Bouchez, M., Blanchet, D. and Vandecasteele, J.P. (1995) Degradation of Polycyclic Aromatic-Hydrocarbons by Pure Strains and by Defined Strain Associations — Inhibition Phenomena and Cometabolism. Appl. Microbiol. Biotechnol. 43, 156–164.

    Article  PubMed  CAS  Google Scholar 

  22. Coates, J.D., Woodward, J., Allen, J., Philp, P. and Lovley, D.R. (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63, 3589–3593.

    PubMed  CAS  Google Scholar 

  23. Barnsley, E.A. (1976) Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate. J. Bacteriol. 125, 404–408.

    PubMed  CAS  Google Scholar 

  24. Barnsley, E.A. (1983) Bacterial oxidation of naphthalene and phenanthrene. J. Bacteriol. 153, 1069–1071.

    PubMed  CAS  Google Scholar 

  25. Bateman, J.N., Speer, B., Feduik, L. and Hartline, R.A. (1986) Naphthalene association and uptake in Pseudomonas putida. J. Bacteriol. 166, 155–161.

    PubMed  CAS  Google Scholar 

  26. Churchill, S.A., Harper, J.P. and Churchill, P.F. (1999) Isolation and characterization of a Mycobacterium species capable of degrading three-and four-ring aromatic and aliphatic hydrocarbons. Appl. Environ. Microbiol. 65, 549–552.

    PubMed  CAS  Google Scholar 

  27. Goyal, A.K. and Zylstra, G.J. (1996) Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl. Environ. Microbiol. 62, 230–236.

    PubMed  CAS  Google Scholar 

  28. Zylstra, G.J., Wang, X.P., Kim, E. and Didolkar, V.A. (1994) Cloning and analysis of the genes for polycyclic aromatic hydrocarbon degradation. Ann. N. Y. Acad. Sci. 721, 386–398.

    Article  PubMed  CAS  Google Scholar 

  29. Gibson, D.T., Mahadevan, V., Jerina, D.M., Yogi, H. and Yeh, H.J. (1975) Oxidation of the carcinogens benzo[a]pyrene and benzo[a]anthracene to dihydrodiols by a bacterium. Science 189, 295–297.

    Article  PubMed  CAS  Google Scholar 

  30. Barnsley, E.A. (1975) The bacterial degradation of fuoranthene and benzo(a)pyrene. Can. J. Microbiol. 21, 1004–1008.

    Article  PubMed  CAS  Google Scholar 

  31. Heitkamp, M.A. and Cerniglia, C.E. (1988) Mineralization of polycylic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54, 1612–1614.

    PubMed  CAS  Google Scholar 

  32. Mahaffey, W.R., Gibson, D.T. and Cerniglia, C.E. (1988) Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl. Environ. Microbiol. 54, 2415–2423.

    PubMed  CAS  Google Scholar 

  33. Mueller, J.G., Chapman, P.J. and Pritchard, P.H. (1989) Action of a fluoranthene-utilizing bacterial community on polycyclic hydrocarbon components of creosote. Appl. Environ. Microbiol. 55, 3085–3090.

    PubMed  CAS  Google Scholar 

  34. Weissenfels, W.D., Beyer, M. and Klein, J. (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 32, 479–484.

    Article  PubMed  CAS  Google Scholar 

  35. Mueller, J.G., Chapman, P.J., Blattmann, B.O. and Pritchard, P.H. (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56, 1079–1086.

    PubMed  CAS  Google Scholar 

  36. Shuttleworth, K.L., Sung, J.H., Kim, E. and Cerniglia, C.E. (2000) Physiological and genetic comparison of two aromatic hydrocarbon-degrading Sphingomonas strains. Mol. Cells 10, 199–205.

    PubMed  CAS  Google Scholar 

  37. Kelley, I., Freeman, J.P., Evans, F.E. and Cerniglia, C.E. (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl. Environ. Microbiol. 59, 800–806.

    PubMed  CAS  Google Scholar 

  38. Rehmann, K., Noll, HP., Steinberg, C.E.W. and Kettrup, A.A. (1998) Pyrene degradation by Mycobacterium sp. strain KR2. Chemosphere 36, 2977–2992.

    Article  PubMed  CAS  Google Scholar 

  39. Boldrin, B., Thiem, A. and Fritzsche, C. (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by Mycobacterium sp. Appl. Environ. Microbiol. 59, 1927–1930.

    PubMed  CAS  Google Scholar 

  40. Walter, U., Beyer, M., Klein, J. and Rehn, H.J. (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 34, 671–676.

    CAS  Google Scholar 

  41. Schneider, J., Grosser, R., Jayasimhulu, K., Xue, W.L. and Warshawsky, D. (1996) Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site (vol 62, pg 14, 1996). Appl. Environ. Microbiol. 62, 1491–1491.

    PubMed  CAS  Google Scholar 

  42. Boonchan, S., Britz, ML. and Stanley, G.A. (2000) Degradation and mineralization of high-molecularweight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 66, 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  43. Kiyohara, H., Nagao, K. and Yana, K. (1982) Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl. Environ. Microbiol. 43, 454–457.

    PubMed  CAS  Google Scholar 

  44. Stieber, M., Haeseler, P., Werner, P. and Frimmel, F.H. (1994) A rapid screening method for microorganisms degrading PAHs in microplates. Appl. Microbiol. Biotechnol. 40, 753–755.

    Article  CAS  Google Scholar 

  45. Ascon-Cabrera, M. and Lebeault, J. (1993) Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system. Appl. Environ. Microbiol. 59, 1717–1724.

    PubMed  CAS  Google Scholar 

  46. Bastiaens, L., Springael, D., Wattiau, P., Harms, H., de Wachter, R., Verachtert, H. and Diels, L. (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl. Environ. Microbiol. 66, 1834–1843.

    Article  PubMed  CAS  Google Scholar 

  47. Grosser, R.J., Friedrich, M., Ward, D.M. and Inskeep, W.P. (2000) Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl. Environ. Microbiol. 66, 2695–2702.

    Article  PubMed  CAS  Google Scholar 

  48. Dunn, N.W. and Gunsalus, I.C. (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114, 974–979.

    PubMed  CAS  Google Scholar 

  49. Menn, F.M., Applegate, B.M. and Sayler, G.S. (1993) NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl. Environ. Microbiol. 59, 1938–1942.

    PubMed  CAS  Google Scholar 

  50. Kastner, M., Breuer-Jammali, M. and Mahro, B. (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 41, 267–273.

    Article  Google Scholar 

  51. Solano-Serena, F., Marchal, R., Casaregola, S., Vasnier, C, Lebeault, J.M. and Vandecasteele, J.P. (2000) A Mycobacterium strain with extended capacities for degradation of gasoline hydrocarbons. Appl. Environ. Microbiol. 66, 2392–2399.

    Article  PubMed  CAS  Google Scholar 

  52. Takeuchi, M., Sawada, H., Oyaizu, H. and Yokota, A. (1994) Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int. J. Syst. Bacteriol. 44, 308–314.

    Article  PubMed  CAS  Google Scholar 

  53. Kawahara, K., Moll, H., Knirel, Y.A., Seydel, U. and Zahringer, U. (2000) Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur. J. Biochem. 267, 1837–1846.

    Article  PubMed  CAS  Google Scholar 

  54. Naka, T., Fujiwara, N., Yabuuchi, E., Doe, M., Kobayashi, K., Kato, Y. and Yano, I. (2000) A novel sphingoglycolipid containing galacturonic acid and 2-hydroxy fatty acid in cellular lipids of Sphingomonas yanoikuyae. J. Bacteriol. 182, 2660–2663.

    Article  PubMed  CAS  Google Scholar 

  55. Balkwill, D.L., Drake, G.R., Reeves, R.H., Fredrickson, J.K., White, D.C., Ringelberg, D.B., Chandler, D.P., Romine, M.F., Kennedy, D.W. and Spadoni, CM. (1997) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int. J. Syst. Bacteriol. 47, 191–201.

    Article  PubMed  CAS  Google Scholar 

  56. Masai, E., Katayama, Y., Nishikawa, S., Yamasaki, M., Morohoshi, N. and Haraguchi, T. (1989) Detection and localization of a new enzyme catalyzing the beta-aryl ether cleavage in the soil bacterium Pseudomonas paucimobilis SYK-6. FEBS Lett. 249, 348–352.

    Article  PubMed  CAS  Google Scholar 

  57. Nohynek, L.J., Suhonen, E.L., NurmiahoLassila, E.L., Hantula, J. and SalkinojaSalonen, M. (1996) Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst. Appl. Microbiol. 18, 527–538.

    Article  CAS  Google Scholar 

  58. Nagata, Y., Miyauchi, K., Suh, S.K., Futamura, A. and Takagi, M. (1996) Isolation and characterization of Tn5-induced mutants of Sphingomonas paucimobilis defective in 2, 5-dichlorohydoquinone degradation. Biosci. Biotechnol. Biochem. 60, 689–691.

    Article  CAS  Google Scholar 

  59. Wang, Y. and Lau, P.C.K. (1996) Sequence and expression of an isocitrate dehydrogenase-encoding gene from a polycyclic aromatic hydrocarbon oxidizer, Sphingomonas yanoikuyae B1. Gene 168, 15–21.

    Article  PubMed  CAS  Google Scholar 

  60. Wattiau, P., Bastiaens, L., van Herwijnen, R., Daal, L., Parsons, J.R., Renard, M.-E., Springael, D. and Cornelis, G.R. Fluorene degradation by Sphingomonas sp. LB 126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol, in press.

    Google Scholar 

  61. Andujar, E., Hernaez, M.J., Kaschabek, SR., Reineke, W. and Santero, E. (2000) Identification of an extradiol dioxygenase involved in tetralin biodegradation: Gene sequence analysis and purification and characterization of the gene product. J. Bacteriol. 182, 789–795.

    Article  PubMed  CAS  Google Scholar 

  62. Miyauchi, K., Adachi, Y., Nagata, Y. and Takagi, M. (1999) Cloning and sequencing of a novel metacleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. J. Bacteriol. 181, 6712–6719.

    PubMed  CAS  Google Scholar 

  63. Videira, P.A., Cortes, L.L., Fialho, A.M. and Sa-Correia, I. (2000) Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Appl. Environ. Microbiol. 66, 2252–2258.

    Article  PubMed  CAS  Google Scholar 

  64. Xun, L.Y., Bohuslavek, J. and Cai, M.A. (1999) Characterization of 2, 6-dichloro-p-hydroquinone 1, 2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723. Biochem. Biophys. Res. Commun. 266, 322–325.

    Article  PubMed  CAS  Google Scholar 

  65. Romine, M.F., Stillwell, L.C., Wong, K.K., Thurston, S.J., Sisk, E.C., Sensen, C, Gaasterland, T., Fredrickson, J.K. and Saffer, J.D. (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol. 181, 1585–1602.

    PubMed  CAS  Google Scholar 

  66. Bastiaens, L., Springael, D., Dejonghe, W., Wattiau, P., Verachtert, H. and Diels, L. A transcriptional luxAB reporter fusion responding to fluorene in Sphingomonas sp. LB 126 and its initial characterisation for whole-cell bioreporter purposes. Res Microbiol, in press.

    Google Scholar 

  67. Brennan, P.J. and Nikaido, H. (1995) The Envelope of Mycobacteria. Annu. Rev. Biochem. 64, 29–63.

    Article  PubMed  CAS  Google Scholar 

  68. Liu, J. and Nikaido, H. (1999) A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates. Proc. Natl. Acad. Sci. USA 96, 4011–4016.

    Article  PubMed  CAS  Google Scholar 

  69. Luquin, M., Ausina, V., Lopez Calahorra, F., Belda, F., Garcia Barcelo, M., Celma, C. and Prats, G. (1991) Evaluation of practical chromatographic procedures for identification of clinical isolates of mycobacteria. J. Clin. Microbiol. 29, 120–130.

    PubMed  CAS  Google Scholar 

  70. Parish, T. and Stoker, N.G. (1998) Mycobacteria protocols, Methods in Molecular Biology, Humana Press, Totowa, New Jersey.

    Book  Google Scholar 

  71. Rauzier, J., Moniz-Pereira, J. and Gicquel-Sanzey, B. (1988) Complete nucleotide sequence of pAL5000, a plasmid from Mycobacterium fortuitum. Gene 71, 315–321.

    Article  PubMed  CAS  Google Scholar 

  72. Guilhot, C, Otal, I., Van Rompaey, I., Martin, C. and Gicquel, B. (1994) Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J. Bacteriol. 176, 535–539.

    PubMed  CAS  Google Scholar 

  73. Govindaswami, M., Feldhake, D.J., Kinkle, B.K., Mindell, D.P. and Loper, J.C. (1995) Phylogenetic comparison of two polycyclic aromatic hydrocarbon-degrading mycobacteria. Appl. Environ. Microbiol. 61, 3221–3226.

    PubMed  CAS  Google Scholar 

  74. Bragg, J.R., Prince, R.C., Harner, E.J. and Atlas, R.M. (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368, 413–418.

    Article  CAS  Google Scholar 

  75. Wang, X., Yu, X. and Bartha, R. (1990) Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ. Sci. Technol. 24, 1086–1089.

    Article  CAS  Google Scholar 

  76. Madsen, E.L. (1991) Determining in situ bioremediation: Facts and challenges. Environ. Sci. Technol. 25, 1663–1673.

    Article  Google Scholar 

  77. Kastner, M., Breuer-Jammali, M. and Mahro, B. (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl. Environ. Microbiol. 64, 359–362.

    PubMed  CAS  Google Scholar 

  78. Pamukcu, S., Filipova, I. and Wittle, J.K. (1995) The Role of Electroosmosis in Transporting PAH Compounds in Contaminated Soils, in: E.W. Brooman and J.M. Fenton (eds.) Proc. of the Symp. on Electrochemical Technology Applied to Environmental Problems, PV 95-12, The Electrochemical Society, pp. 252–266.

    Google Scholar 

  79. Mueller, G.J., Lantz, S.E., Blattmann, B.O. and Chapman, P.J. (1991) Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol-and creosotecontaminated materials: slurry phase bioremediation. Environ. Sci. Technol. 25, 1045–1055.

    Article  CAS  Google Scholar 

  80. Thomas, J.M., Yordy, J.R., Amador, J.A. and Alexander, M. (1986) Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl. Environ. Microbiol. 52, 290–296.

    PubMed  CAS  Google Scholar 

  81. Stelmack, P.L., Gray, M.R. and Pickard, M.A. (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl. Environ. Microbiol. 65, 163–168.

    PubMed  CAS  Google Scholar 

  82. Wick, L.Y., Colangelo, T. and Harms, H. (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ Sci Technol 35, 354–61.

    Article  PubMed  CAS  Google Scholar 

  83. Van Oss, C.J. (1994) Interfacial forces in aqueous media, New York.

    Google Scholar 

  84. DeFlaun, M.F., Tanzer, A.S., McAteer, A.L., Marshall, B. and Levy, S.B. (1990) Development of an adhesion assay and characterization of an adhesion-deficient mutant of Pseudomonas fluorescens. Appl. Environ. Microbiol. 56, 112–119.

    PubMed  CAS  Google Scholar 

  85. DeFlaun, M., Marshall, B., Kulle, E. and Levy, S. (1994) Tn5 insertion mutants of Pseudomonas fluorescens defective in adhesion to soil and seeds. Appl. Environ. Microbiol. 60, 2637–2642.

    PubMed  CAS  Google Scholar 

  86. DeFlaun, M.F., Oppenheimer, S.R., Streger, S., Condee, C.W. and Fletcher, M. (1999) Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad. Appl. Environ. Microbiol. 65, 759–765.

    PubMed  CAS  Google Scholar 

  87. Tiehm, A. (1994) Degradation of polycyclic aromatic-hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60, 258–263.

    PubMed  CAS  Google Scholar 

  88. Kühler, A., Schüttoff, M., Bryniok, D. and Knackmuss, H.J. (1994) Enhanced biodegradation of phenanthrene in abiphasic culture system. Biodegradation 45, 93–103.

    Article  Google Scholar 

  89. Ortega-Calvo, J.J. and Alexander, M. (1994) Roles of bacterial attachment and spontaneous partitioning in the biodegradation of naphtalene initially present in nonaqueous-phase liquids. Appl. Environ. Microbiol. 60, 2643–2646.

    PubMed  CAS  Google Scholar 

  90. Thibault, S.L., Anderson, M. and Frankenberger, W.T. (1996) Influence of surfactants on pyrene desorption and degradation in soils. Appl. Environ. Microbiol. 62, 283–287.

    PubMed  CAS  Google Scholar 

  91. Madsen, E.L., Thomas, C.T., Wilson, M.S., Sandoli, R.L. and Bilotta, S.E. (1996) In situ dynamics of aromatic hydrocarbons and bacteria capable of AH metabolism in a coal tar waste-contaminated field site. Environ. Sci. Technol. 30, 2412–2416.

    Article  CAS  Google Scholar 

  92. Willumsen, P.A. and Karlson, U. (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7, 415–423.

    Article  Google Scholar 

  93. Barkay, T., Navon-Venezia, S., Ron, E.Z. and Rosenberg, E. (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl. Environ. Microbiol. 65, 2697–2702.

    PubMed  CAS  Google Scholar 

  94. Harms, H. and Zehnder, A.J. (1994) Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria. Appl. Environ. Microbiol. 60, 2736–2745.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wattiau, P. (2002). Microbial Aspects in Bioremediation of Soils Polluted by Polyaromatic Hydrocarbons. In: Agathos, S.N., Reineke, W. (eds) Biotechnology for the Environment: Strategy and Fundamentals. Focus on Biotechnology, vol 3A. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0357-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0357-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3907-9

  • Online ISBN: 978-94-010-0357-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics