Skip to main content

Model Hamiltonians and First Principles Electronic Structure Calculations

  • Chapter
New Theoretical Approaches to Strongly Correlated Systems

Part of the book series: NATO Science Series ((NAII,volume 23))

Abstract

We review the basic ideas of the dynamical mean field theory (DMFT). Some of the remarkable insights into the electronic structure of strongly correlated electrons are introduced using the simplest model Hamiltonians. We then discuss the perspectives for carrying out more realistic DMFT studies of strongly correlated electron systems and we compare it with existent methods, LDA and LDA+U. We stress the existence of new functional for electronic structure calculations which allow us to treat situations where the single-particle description breaks down such as the vicinity of the Mott transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent review see M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, (1998) 1039

    Article  ADS  Google Scholar 

  2. For review and references to the literature see A. Georges G. Kotliar W. Krauth and M. Rozenberg, Reviews of Modern Physics 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  3. For a review, see, e.g., Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and S. H. March (Plenum, New York, 1983)

    Google Scholar 

  4. P.W. Anderson, Mater. Res. Bull. 8, 153 (1973); P. Fazekas and P.W. Anderson, Philos. Mag. 30, 423 (1974)

    Article  Google Scholar 

  5. G. Kotliar, S. Savrasov, and G. Palsson, cond-mat/0010328

    Google Scholar 

  6. F. Aryasetiavan, O. Gunnarson, Rep. Prog. Phys. 61(3) 237 (1998)

    Article  ADS  Google Scholar 

  7. R. Chitra and G. Kotliar Phys. Rev. Lett 84, 3678–3681 (2000).

    Article  ADS  Google Scholar 

  8. R. Chitra and G. Kotliar Phys. Rev. B 62, 12715 (2000)

    Article  ADS  Google Scholar 

  9. R. Chitra and G. Kotliar Phys. Rev. B in press. cond-mat/9911223

    Google Scholar 

  10. R. Chitra and G. Kotliar Phys. Rev. Lett 83, 2386 (1999) G. Kotliar Physica B, 259-261 (1999) 711

    Article  ADS  Google Scholar 

  11. A. Georges and G. Kotliar, Phys. Rev. B 15, 6479 (1992)

    Article  ADS  Google Scholar 

  12. M. Jarrell and T. Pruschke, Phys. Rev. B 49, 1458 (1994)

    Article  ADS  Google Scholar 

  13. M. Rozenberg G. Kotliar and X.Y. Zhang Phys Rev. B 49 10181 (1994); M. Rozenberg et. al. Phys. Rev Lett. 75, 105 (1995)

    Article  ADS  Google Scholar 

  14. V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin and G. Kotliar, J. Phys. Cond. Mat. 35, 7359–7367 (1997).

    Article  ADS  Google Scholar 

  15. S. Savrasov et. al., unpublished

    Google Scholar 

  16. Lefebvre et. al. cond-mat/0004455

    Google Scholar 

  17. R. H. McKenzie Comments Cond. Mat. Phys. 18, 309 (1988). J. Merino and R. McKenzie, cond-mat/9909041

    Google Scholar 

  18. Kuwamoto Honig and Appell Phys. Rev. B 22, 2626 (1980)

    Article  ADS  Google Scholar 

  19. F. Gautier, G. Krill, M. F. Lapierre, P. Panissod, C. Robert, G. Czjzek, J. Fink and H. Schmidt, Phys. Lett. A 53, 31 (1975)

    Article  ADS  Google Scholar 

  20. G. Kotliar, European Journal of Physics B 11, 27 (1999)

    Article  Google Scholar 

  21. G. Kotliar, E. Lange and M. Rozenberg, Phys. Rev. Lett. 84, 5180 (2000)

    Article  ADS  Google Scholar 

  22. M. Rozenberg, X. Y. Zhang and G. Kotliar, Phys. Rev. Lett. 69, 1236 (1992); A. Georges, and W. Krauth, Phys. Rev. Lett. 69, 1240 (1992)

    Article  ADS  Google Scholar 

  23. XY Zhang, M Rozenberg and G. Kotliar Phys. Rev. Lett. 70, 1666 (1993)

    Article  ADS  Google Scholar 

  24. A. Fujimori et. al. Phys. Rev. Lett. 69, 1796 (1992)

    Article  ADS  Google Scholar 

  25. V. J. Emery and S. Kivelson Phys. Rev. Lett. 74, 3253 (1995)

    Article  ADS  Google Scholar 

  26. G. Palsson and G. Kotliar Phys. Rev, Lett. 80, 4775 (1988)

    Article  ADS  Google Scholar 

  27. A. J. Milli,. J. Hu, S. D. Sarma, Phys. Rev. Lett. 82, 2354 (1999)

    Article  ADS  Google Scholar 

  28. for an early discussion, see, E. H. Sawatzki, M. B. J. Meinders, G. A. Sawatzky, Phys. Rev. Lett. 67,1035 (1991)

    Article  ADS  Google Scholar 

  29. Z. Schlesinger et. al., Phys. Rev. Lett. 71,1748 (1993)

    Article  ADS  Google Scholar 

  30. M. Rozenberg, G. Kotliar, and H. Kajueter, Phys. Rev.B.54, 8452 (1996)

    Article  Google Scholar 

  31. R. Fukuda, T. Kotani,a nd S. Yokojima, Prog. Theory Phys. 92, 833 (1994); R. Fukuda et. al., Prog. Theory Phys. Suppl. 121, 1 (1996)

    Article  ADS  Google Scholar 

  32. M. Valiev and G. Fernando, Phys. Lett. A 227, 265 (1997)

    Article  ADS  Google Scholar 

  33. N. Argaman and G. Makov, American Journal of Physics (in press)

    Google Scholar 

  34. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  35. O. K. Andersen, Phys. Rev. B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  36. D. D. Koelling and B. N. Harmon, J.Phys. C: Solid State Phys. 10, 3107 (1977)

    Article  ADS  Google Scholar 

  37. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  38. A. Lichtenstein, private communication

    Google Scholar 

  39. V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, J. Phys.: Condens Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  40. B. Brandow, Adv. Phys. 26, 651 (1977)

    Article  ADS  Google Scholar 

  41. For a review, see, e.g., Strong Correlations in electronic structu re calculations, edited by V. I. Anisimov (Gordon and Breach Science Publishers, Amsterdam, 2000).

    Google Scholar 

  42. S. Savrasov and G. Kotliar, Phys. Rev. Lett. 84, 3670 (2000)

    Article  ADS  Google Scholar 

  43. G. Kotliar and Q. Si, Physica Scripta 49, 165 (1993)

    Article  Google Scholar 

  44. M. Katsenelson and A. Lichtenstein, Phys. Rev. B 57, 6884 (1998)

    ADS  Google Scholar 

  45. S. Savrasov, et. al., unpublished

    Google Scholar 

  46. H. Kajueter and G. Kotliar, Phys. Rev. Lett. 77, 131 (1996)

    Article  ADS  Google Scholar 

  47. S. Savrasov, et. al., unpublished

    Google Scholar 

  48. G. Kotliar and M. Rozenberg in Superconductivity and Strongly Correlated Electron Systems, edited by C. Noce A. Romano and G. Scarpetta (World Scientific, 1994) p. 9

    Google Scholar 

  49. M. Rozenberg G. Kotliar and X. Y. Zhang Phys Rev. B 49, 10181–10193 (1994)

    Article  Google Scholar 

  50. H. Kajueter and G. Kotliar, Int. Journal of Mod. Phys. 11, 729 (1997); G. Kotliar and H. Kajueter, Phys. Rev. B 54, 14221 (1996)

    Article  Google Scholar 

  51. H. Kajueter, G Kotliar and G. Moeller, Phys. Rev. B 53, 16214 (1996)

    Article  Google Scholar 

  52. D. D. Sarma, S. Barman, H. Kajueter and G. Kotliar, Physica B 223, 496 (1996); D. D. Sarma, S. Barman, H. Kajueter and G. Kotliar, Europhys. Lett. 36, 307 (1996)

    Article  ADS  Google Scholar 

  53. I. Yang, S. Y. Savrasov, G. Kotliar, cond-mat/0006385

    Google Scholar 

  54. M. Katsenelson and A. Lichtenstein, Phys. Rev. B 61, 8906 (2000)

    Article  ADS  Google Scholar 

  55. S. Savrasov, G. Kotliar, E. Abrahams, unpublished

    Google Scholar 

  56. G. Palsson, PhD Thesis, Rutgers University, 2000

    Google Scholar 

  57. A. Georges and W. Krauth, Phys. Rev. B 48, 7167 (1993)

    Article  ADS  Google Scholar 

  58. V. Dobrosavlevic and G. Kotliar, Phil. Trans. R. Soc. Lond. A 356, 57 (1998)

    Article  ADS  Google Scholar 

  59. V. Dobrosavlevic and G. Kotliar, Phys. Rev. Lett. 78, 3943 (1997)

    Article  ADS  Google Scholar 

  60. A. Lichtenstein, private communication

    Google Scholar 

  61. Y. Motome and G. Kotliar, Phys. Rev. B 62, 12800 (2000)

    Article  ADS  Google Scholar 

  62. Q. Si, J. L. Smith, Phys. Rev. Lett. 77 3391 (1997)

    Article  ADS  Google Scholar 

  63. H. Kajueter, Ph.D. Thesis, Rutgers University, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kotliar, G., Savrasov, S.Y. (2001). Model Hamiltonians and First Principles Electronic Structure Calculations. In: Tsvelik, A.M. (eds) New Theoretical Approaches to Strongly Correlated Systems. NATO Science Series, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0838-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0838-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7001-7

  • Online ISBN: 978-94-010-0838-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics