Skip to main content

Nanostructured Forms of Carbon : An Overview

  • Conference paper
Nanostructured Carbon for Advanced Applications

Part of the book series: NATO Science Series ((NAII,volume 24))

Abstract

Carbon is a remarkable element showing a variety of stable forms ranging from 3D semiconducting diamond to 2D semi-metallic graphite to 1D conducting and semiconducting carbon nanotubes to 0D fullerenes [1]. One distinction between these forms of carbon relates to the many possible configurations of the electronic states of a carbon atom, which is known as the hybridization of atomic orbitals and relates to the bonding of a carbon atom to its nearest neighbors. Carbon is the sixth element of the periodic table and has the lowest atomic number of any element in column IV of the periodic table. Each carbon atom has six electrons which occupy 1s2 , 2s2, and 2p2 atomic orbitals. The 1s2 orbital contains two strongly bound core electrons. Four more weakly bound electrons occupy the 2s22p6 valence orbitals. In the crystalline phase, the valence electrons give rise to 2s, 2px, 2py, and 2pz orbitals which are important in forming covalent bonds in carbon materials. Since the energy difference between the upper 2p energy levels and the lower 2s level in carbon is small compared with the binding energy of the chemical bonds, the electronic wave functions for these four electrons can readily mix with each other, thereby changing the occupation of the 2s and three 2p atomic orbitals so as to enhance the binding energy of the C atom with its neighboring atoms. The general mixing of 2s and 2p atomic orbitals is called hybridization, whereas the mixing of a single 2s electron with one, two, or three 2p electrons is called spn hybridization with n= 1,2,3. Thus three possible hybridizations occur in carbon: sp, sp2 and sp3, while other group IV elements such as Si and Ge exhibit primarily sp3 hybridization. Carbon differs from Si and Ge insofar as carbon does not have inner atomic orbitals, except for the spherical Is orbitals, and the absence of nearby inner orbitals facilitates hybridizations involving only valence s and p orbitals for carbon. The various bonding states are connected with certain structural arrangements, so that sp bonding gives rise to chain structures, sp2 bonding to planar structures and sp3 bonding to tetrahedral structures (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dresselhaus, M. S., Dresselhaus, G. and Eklund, P. C. (1996) Science of Fullerenes and Carbon Nanotubes, Academic Press, Boston.

    Google Scholar 

  2. Robertson, J., Advances in Physics, (1986) 35, 317.

    Article  ADS  Google Scholar 

  3. Wyckoff, R. W. G., (1964) In Crystal Structures, vol. 1, Interscience, New York.

    Google Scholar 

  4. Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I. L., and Goldberg, H. A. (1988) Graphite Fibers and Filaments, vol. 5 of Springer Series in Materials Sciecne, Springer Verlag, Berlin.

    Google Scholar 

  5. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., and Smalley, R. E., (1985) Nature 318, 162.

    Article  ADS  Google Scholar 

  6. Iijima, S., Nature (1991) 324, 56

    Article  ADS  Google Scholar 

  7. Donnet, J. B., Bansal, R. C. and Wang, M. J. (1993) Carbon Black, Marcel Dekker, New York.

    Google Scholar 

  8. Knight, D. S. and White, W. B. (1989) J. Mater. Res., 4, 385

    Article  ADS  Google Scholar 

  9. Heidenreich, R. D., Hess, W. M., and Ban, L. L. (1968) J. Appl. Crystallogr., 1, 1

    Article  Google Scholar 

  10. Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., (1990) Nature, 347 354

    Article  ADS  Google Scholar 

  11. Eklund, P. C. and Rao, A. M. (eds.) (1999) Fullerene Polymers and Fullerene Polymer Composites, vol. 38 of Springer Series in Materials Science, Berlin.

    Google Scholar 

  12. Piskoti, C., Yarger, J., and Zettl, A., (1998) C36, A New Carbon Solid, Nature 393, 771–774.

    Article  ADS  Google Scholar 

  13. Saito, Y., Yoshikawa, T., Okuda, M., Ohkohchi, M., Ando, Y., Kasuya, A., and Nishina, Y. (1994) Synthesis and Electron-beam Incision of Carbon Nanocapsules Encaging YC2, Chem. Phys. Lett. 209, 72.

    Article  ADS  Google Scholar 

  14. Ugarte, D., (1992) Curling and Closure of Graphitic Networks under Electron Beam Irradiation, Nature 359, 707–709.

    Article  ADS  Google Scholar 

  15. Q. L. Zhang et al, J. Phys. Chem., 90, 525 (1986)

    Article  Google Scholar 

  16. Banhart, F. and Ajayan, P. M., (1996) Carbon Onions as Nanoscopic Pressure Cells for Diamond Fromation, Nature 382, 433–435.

    Article  ADS  Google Scholar 

  17. Banhart, F., Redlich, Ph., and Ajayan, P. M., (1998) The Migration of Metal Atoms Through Carbon Onions, Chem. Phys. Lett. 292, 554–560.

    Article  ADS  Google Scholar 

  18. Fung, A. W. P., Wang, Z. H., Lu, K., Dresselhaus, M. S. and Pekala, R. W. (1993) J. Mat. Res. 8, 1875

    Article  ADS  Google Scholar 

  19. Shiflett, M. B. and Foley, H. C., (1999) Ultrasonic Deposition of High-Selectivity Nanoporous Carbon Mambranes, Science 285, 1902–1905.

    Article  Google Scholar 

  20. Saito, R., Dresselhaus, M.S. and Dresselhaus, G., Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1998)

    Book  Google Scholar 

  21. Terrones, M. et al, (1997) Nature 388, 52

    Article  ADS  Google Scholar 

  22. Ren, Z. et al, (1998) Science 282, 1105

    Article  ADS  Google Scholar 

  23. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C., and Chen, J., (1999) Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization, Chem. Phys. Lett. 303, 467–474.

    Article  ADS  Google Scholar 

  24. Rao, A.M. et al, Polarized Raman Study of Aligned Multiwalled Carbon Nanotubes, (2000) Phys. Rev. Lett. 84, 1820

    Article  ADS  Google Scholar 

  25. Rao, A.M. et al, In situ-grown carbon nanotube array with excellent field emission characteristics, (2000) Appl. Phys. Lett. 76, 3813

    Article  ADS  Google Scholar 

  26. Sun, L. F., Xie, S. S., Liu, W., Zhou, W. Y. Liu, Z. Q., Tsang, D. S., Wang, G., and Qian, L. X., (2000) Creating the Narrowest Carbon Nanotubes, Nature 403, 384

    Article  ADS  Google Scholar 

  27. Iijima, S. and Ichihashi T., (1993) Nature 363, 603

    Article  ADS  Google Scholar 

  28. Bethune, D.S. et al, (1993) Nature 363, 605

    Article  ADS  Google Scholar 

  29. Thess, A. et al, (1996) Science 273, 483

    Article  ADS  Google Scholar 

  30. Ebbesen, T.W. (1994) Annu. Rev Mater. Sci. 24, 235

    Article  ADS  Google Scholar 

  31. Pederson, M.R. and Broughton, J.Q., (1992) Phys. Rev. Lett. 69, 2689

    Article  ADS  Google Scholar 

  32. Ajayan, P.M. et al, (1993) Nature 362, 522

    Article  ADS  Google Scholar 

  33. Guerret-Piecourt, C. et al, (1994) Nature 372, 159

    Article  Google Scholar 

  34. B. I. Dunlap, Phys. Rev. B 49, 5643 (1994)

    Article  ADS  Google Scholar 

  35. Ph. Lambin, A. Fonseca, J. Vigneron, J. B. Nagy, and A. A. Lucas, Chem. Phys. Lett., 245, 85 (1995)

    Article  ADS  Google Scholar 

  36. M. Menon and D. Srivastava, Carbon Nanotube “T Junctions”: Nanoscale Metal-Semicondcutor-Metal Contact Devices, (1999) Phys. Rev. Lett., 4453–4456

    Google Scholar 

  37. Li, J., Papadopoulos, C., and Xu, J., (1999) Growing Y-junction Carbon Nanotubes, Nature 402, 253–254.

    ADS  Google Scholar 

  38. Saito, Y. and Matsumoto, T., (1998) Carbon Nano-cages Created as Cubes, Nature 392, 237.

    Article  ADS  Google Scholar 

  39. Tomita, M. et al, (1993) Jpn. J. Appl. Phys. 32, L280

    Article  ADS  Google Scholar 

  40. Ruoff, R.S. et al, (1993) Science 259, 346

    Article  ADS  Google Scholar 

  41. Y. Saito, et al., (1993) J. Phys. Chem. Solids 54, 1849

    Article  ADS  Google Scholar 

  42. Martel, R., Shea, H. R., and Avouris, P., (1999) Rings of Single-walled Carbon Nanotubes, Nature 398, 299.

    Article  ADS  Google Scholar 

  43. Martel, R., Shea, H. R., and Avouris, P., (1999) Ring formation in Single-Wall Carbon Nanotubes, J. of Phys. Chem. B 103, 7551–7556.

    Article  Google Scholar 

  44. J. Lui et al., (1998) Science, 280, 1253

    Article  ADS  Google Scholar 

  45. Ahlskog, M. et al, (1999) Chem. Phys. Lett. 300, 202

    Article  ADS  Google Scholar 

  46. J. Lui et al., (1997) Nature, 385 780

    ADS  Google Scholar 

  47. Krishnan, A., Dujardin, E., Treacy, M. M. J., Hugdahl, J., Lynum, S., and Ebbesen, T. W., (1997) Graphitic Cones and the Nucleation of Curved Carbon Surfaces, Nature 388, 451–454.

    Article  ADS  Google Scholar 

  48. Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., and Takahashi, K., (1999) Nano-aggregates of Single-walled Graphitic Carbon Nano-horns, Chem. Phys. Lett. 309, 165–170.

    Article  ADS  Google Scholar 

  49. Jacobsen, R. L. and Monthioux, M., (1997) Carbon Beads with Protruding Cones, Nature 385, 211–212.

    Article  ADS  Google Scholar 

  50. Ajayan, P. M., Nugent, J. M., Siegel, R. W., Wei, B., and Kohler-Redlich, Ph., (2000) Growth of Carbon Micro-trees, Nature 404, 243.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rao, A.M., Dresselhaus, M.S. (2001). Nanostructured Forms of Carbon : An Overview. In: Benedek, G., Milani, P., Ralchenko, V.G. (eds) Nanostructured Carbon for Advanced Applications. NATO Science Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0858-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0858-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7042-0

  • Online ISBN: 978-94-010-0858-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics