Skip to main content

Part of the book series: Episteme ((EPIS,volume 2))

Abstract

Fuzzy logic differs from conventional logical systems in that it aims at providing a model for approximate rather than precise reasoning.

The fuzzy logic, FL, which is described in this paper has the following principal features, (a) The truth-values of FL are fuzzy subsets of the unit interval carrying labels such as true, very true, not very true, false, more or less true, etc.; (b) The truth-values of FL are structured in the sense that they may be generated by a grammar and interpreted by a semantic rule; (c) FL is a local logic in that, in FL, the truth-values as well as the connectives such as and, or, if… then have a variable rather than fixed meaning; and (d) The rules of inference in FL are approximate rather than exact.

The central concept in FL is that of a fuzzy restriction, by which is meant a fuzzy relation which acts as an elastic constraint on the values that may be assigned to a variable. Thus, a fuzzy proposition such as ‘Nina is young’ translates into a relational assignment equation of the form R (Age (Nina)) = young in which Age (Nina) is a variable, R (Age (Nina)) is a fuzzy restriction on the values of Age (Nina), and young is a fuzzy unary relation which is assigned as a value to R(Age(Nina)).

In general, a composite fuzzy proposition translates into a system of relational assignment equations. In this paper, translation rules are developed for propositions of four basic types: Type I, of the general form ‘X is mF,’ where X is the name of an object or a variable, m is a linguistic modifier, e.g., not, very, more or less, quite, etc., and F is a fuzzy subset of a universe of discourse. Type II, of the general form X is F Y is G or ‘AT is in relation R to Y,’ where * is a binary connective, e.g., and, or, if… then, etc., and R is a fuzzy relation, e.g., much greater. Type III, of the general form ‘QX are F,’ where Q is a fuzzy quantifier, e.g., some, most, many, several, etc., and F is a fuzzy subset of a universe of discourse. And, Type IV, of the general form ‘X is F is T,’ where T is a linguistic truth-value such as true, very true, more or less true, etc. These rules may be used in combination to translate composite propositions whose constituents are instances of some of the four types in question, e.g., “’Most tall men are stronger than most short men” is more or less true,’ where the italicized words denote labels of fuzzy sets.

The translation rules for fuzzy propositions of Types I, II, III and IV induce corresponding truth valuation rules which serve to express the fuzzy truth-value of a fuzzy proposition in terms of the truth-values of its constituents. In conjunction with linguistic approximation, these rules provide a basis for approximate inference from fuzzy premises, several forms of which are described and illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. A. Zadeh, ‘Fuzzy Logic and Approximate Reasoning (In Memory of Grigore Moisil)’ Synthese 30 (1975), 407–428.

    Article  Google Scholar 

  2. L. A. Zadeh, ‘The Concept of a Linguistic Variable and Its Application to Approximate Reasoning’, Information Sciences, Part I, 8 (1975), 199–249; Part II, 8 (1975), 301–357; Part III, 9 (1975), 43–80.

    Article  Google Scholar 

  3. L. A. Zadeh, ‘Fuzzy Sets’, Information and Control 8 (1965), 338–353.

    Article  Google Scholar 

  4. A. Kaufmann, Introduction to the Theory of Fuzzy Subsets, vol. 1, Elements of Basic Theory, 1973; vol. 2, Applications to Linguistics, Logic and Semantics, 1975; vol. 3, Applications to Classification and Pattern Recognition, 1975, Masson and Co., Paris. Also, Academic Press, 1975.

    Google Scholar 

  5. C. V. Negoita and D. A. Ralescu, Applications of Fuzzy Sets to System Analysis, Birkhauser Verlag, Basel, 1975.

    Google Scholar 

  6. L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura (eds.), Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academic Press, New York, 1975.

    Google Scholar 

  7. L. A. Zadeh, ‘Outline of a New Approach to the Analysis of Complex Systems and Decision Processes’, IEEE Transactions on Systems, Man and Cybernetics SMC-3 (1973), 28–44.

    Article  Google Scholar 

  8. K. Tanaka, ‘Fuzzy Automata Theory and Its Applications to Control Systems’, Osaka University, Osaka, 1970.

    Google Scholar 

  9. R. E. Bellman, R. Kalaba, and L. A. Zadeh, ‘Abstraction and Pattern Classification’, J. Math. Analysis Applications 13 (1966), 1–7.

    Article  Google Scholar 

  10. L. A. Zadeh, ‘Shadows of Fuzzy Sets’, Probl. Transmission Inf. (in Russian) 2 (1966), 37–44.

    Google Scholar 

  11. J. Goguen, ‘L-Fuzzy Sets’, J. Math. Analysis Applications 18 (1967), 145–174.

    Article  Google Scholar 

  12. J. G. Brown, ‘A Note on Fuzzy Sets’, Information and Control 18 (1971), 32–39.

    Article  Google Scholar 

  13. L. A. Zadeh, ‘Similarity Relations and Fuzzy Orderings’, Information Sciences 3 (1971), 177–200.

    Article  Google Scholar 

  14. E. T. Lee and L. A. Zadeh, ‘Note on Fuzzy Languages’, Information Sciences 1 (1969), 421–434.

    Article  Google Scholar 

  15. L. A. Zadeh, ‘Fuzzy Languages and Their Relation to Human and Machine Intelligence’, in Proc. Int. Conf. on Man and Computer, Bordeaux, France, S. Karger, Basel, 1972, pp. 130–165.

    Google Scholar 

  16. E. T. Lee, ‘Fuzzy Languages and Their Relation to Automata’, Dissertation, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 1972.

    Google Scholar 

  17. L. A. Zadeh, ‘Quantitative Fuzzy Semantics’, Information Sciences 3 (1971), 159–176.

    Article  Google Scholar 

  18. A. DeLuca and S. Termini, ‘Algebraic Properties of Fuzzy Sets’, J. Math. Analysis Applications 40 (1972), 377–386.

    Google Scholar 

  19. L. A. Zadeh, ‘Fuzzy Algorithms’, Information and Control 12 (1968), 94–102.

    Article  Google Scholar 

  20. E. Santos, ‘Fuzzy Algorithms’, Information and Control 17 (1970), 326–339.

    Article  Google Scholar 

  21. S. S. L. Chang and L. A. Zadeh, ‘Fuzzy Mapping and Control’, IEEE Transactions on Systems, Man and Cybernetics SMC-2 (1972), 30–34.

    Google Scholar 

  22. A. DeLuca and S. Termini, ‘A Definition of Non-probabilistic Entropy in the Setting of Fuzzy Set Theory’, Information and Control 20 (1972), 201–312.

    Google Scholar 

  23. R. C. T. Lee, ‘Fuzzy Logic and the Resolution Principle’, J. Assoc. Comput. Mach. 19 (1972), 109–119.

    Google Scholar 

  24. R. E. Bellman and M. Giertz, ‘On the Analytic Formalism of the Theory of Fuzzy Sets’, Information Sciences 5 (1973), 149–156.

    Article  Google Scholar 

  25. R. E. Bellman and L. A. Zadeh, ‘Decision-making in a Fuzzy Environment’, Management Science 17 (1970), B-141-B-164.

    Article  Google Scholar 

  26. E. H. Mamdani and S. Assilian, ‘An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller’, Int. J. of Man-Machine Studies 7 (1975), 1–13.

    Article  Google Scholar 

  27. R. Kling, ‘Fuzzy Planner’, Technical Report 168, Computer Science Department, University of Wisconsin, Madison, 1973.

    Google Scholar 

  28. L. Pun, ‘Experience in the Use of Fuzzy Formalism in Problems with Various Degrees of Subjectivity’, University of Bordeaux, Bordeaux, 1975.

    Google Scholar 

  29. V. Dimitrov, W. Wechler, and P. Barnev, ‘Optimal Fuzzy Control of Humanistic Systems’, Institute of Mathematics and Mechanics, Sofia and Department of Mathematics, Technical University Dresden, Dresden, 1974.

    Google Scholar 

  30. L. A. Zadeh, ‘Toward a Theory of Fuzzy Systems’, in Aspects of Network and System Theory, R. Kalman and N. Declaris (eds.), Holt, Rinehart & Winston, London, 1971.

    Google Scholar 

  31. M. A. Arbib and E. G. Manes, ‘A Category-Theoretic Approach to Systems in a Fuzzy World’, Synthese 30 (1975), 381–406.

    Article  Google Scholar 

  32. L. A. Zadeh, ‘Calculus of Fuzzy Restrictions’, in Fuzzy Sets and Their Applications to Cognitive and Decision Processes, L. A. Zadeh, K. S. Fu, K. Tanaka and M. Shimura (eds.), Academic Press, New York, 1975.

    Google Scholar 

  33. T. Kitagawa, ‘Fuzziness in Informative Logics’, in Fuzzy Sets and Their Applications to Cognitive and Decision Processes, L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura (eds.), Academic Press, New York, 1975, pp. 97–124.

    Google Scholar 

  34. S. Tamura and K. Tanaka, ‘Learning of Fuzzy Formal Language’, IEEE Transactions on Systems, Man and Cybernetics SMC-3 (1973), 98–102.

    Google Scholar 

  35. T. Terano and M. Sugeno, ‘Conditional Fuzzy Measures and Their Applications’, in Fuzzy Sets and Their Applications to Cognitive and Decision Processes, L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura (eds.), Academic Press, New York, 1975, pp. 151–170.

    Google Scholar 

  36. M. Shimura, ‘An Approach to Pattern Recognition and Associative Memories Using Fuzzy Logic’, in Fuzzy Sets and Their Applications to Cognitive and Decision Processes, L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura (eds.), Academic Press, New York, 1975, pp. 449–476.

    Google Scholar 

  37. Y. Inagaki and T. Fukumura, ‘On the Description of Fuzzy Meaning of Context- Free Language’, in Fuzzy Sets and Their Applications to Cognitive and Decision Processes, L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura (eds.), Academic Press, New York, 1975, pp. 301–328.

    Google Scholar 

  38. C. L. Chang, ‘Interpretation and Execution of Fuzzy Programs’, in Fuzzy Sets and Their Applications to Cognitive and Decision Processes, L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura (eds.), Academic Press, New York, 1975, pp. 191–218.

    Google Scholar 

  39. R. LeFaivre, ‘Fuzzy: A Programming Language for Fuzzy Problem Solving’, Technical Report 202, Department of Computer Science, University of Wisconsin, Madison, 1974.

    Google Scholar 

  40. E. W. Chapin, Jr., ‘Set-Valued Set Theory’, Notre Dame J. of Formal Logic, Part I, 4 (1975), 619–634; Part II, 4 (1975), 255–267.

    Google Scholar 

  41. E. Sanchez, ‘Fuzzy Relations’, Faculty of Medicine, University of Marseille, Marseille, 1974.

    Google Scholar 

  42. P. N. Marinos, ‘Fuzzy Logic and Its Application to Switching Systems’, IEEE Transactions on Electronic Computers 18 (1969), 343–348.

    Google Scholar 

  43. H. J. Zimmermann, ‘Optimization in Fuzzy Environments’, Institute for Operations Research, Technical University of Aachen, Aachen, 1974.

    Google Scholar 

  44. P. K. Schotch, ‘Fuzzy Modal Logic’, Proc. 1975 Int. Symp. on Multiple-Valued Logic, 1975, pp. 176–182.

    Google Scholar 

  45. R. Giles, ‘Lukasiewicz Logic and Fuzzy Set Theory’, Proc. 1975 Int. Symp. on Multiple-Valued Logic, 1975, pp. 197–211.

    Google Scholar 

  46. F. P. Preparata and R. Yeh, ‘Continuously Valued Logic’, J. Computer and System Sciences 6 (1972), 397–418.

    Article  Google Scholar 

  47. A. Kandel, ‘On Minimization of Fuzzy Functions’, IEEE Transactions on Computers C-22 (1973), 826–832.

    Article  Google Scholar 

  48. L. A. Zadeh, ‘A Fuzzy-Algorithmic Approach to the Definition of Complex or Imprecise Concepts’, Electronics Research Laboratory, University of California, Berkeley, 1974. (To appear in the Int. J. of Man-Machine Studies.)

    Google Scholar 

  49. J. Meseguer and I. Sols, ‘Fuzzy Semantics in Higher Order Logic and Universal Algebra’, University of Zaragoza, Spain, 1975.

    Google Scholar 

  50. A. N. Borisov, G. N. Wulf and J. J. Osis, ‘Prediction of the State of a Complex System Using the Theory of Fuzzy Sets’, Kibernetika i Diagnostika (1972), 79–84.

    Google Scholar 

  51. L. A. Zadeh, ‘A Fuzzy-Set Theoretic Interpretation of Linguistic Hedges’, J. of Cybernetics 2 (1972), 4–34.

    Article  Google Scholar 

  52. G. Lakoff, ‘Hedges: A Study in Meaning Criteria and the Logic of Fuzzy Concepts’, J. of Philosophical Logic 2 (1973), 458–508.

    Google Scholar 

  53. F. Wenstop, ‘Application of Linguistic Variables in the Analysis of Organizations’, School of Business Administration, University of California, Berkeley, 1975.

    Google Scholar 

  54. H. M. Hersh and A. Caramazza, ‘A Fuzzy Set Approach to Modifiers and Vagueness in Natural Language’, J. Exp. Psychology 105 (1976), 254–276.

    Google Scholar 

  55. W. Rödder, ‘On “and” and “or” Connectives in Fuzzy Set Theory’, Institute for Operations Research, Technical University of Aachen, Aachen, 1975.

    Google Scholar 

  56. F. J. Damerau, ‘On Fuzzy Adjectives’, Memorandum RC 5340, IBM Research Laboratory, Yorktown Heights, New York, 1975.

    Google Scholar 

  57. G. C. Moisil, Lectures on Fuzzy Logic (in Roumanian), Scientific and Encyclopedic Editions, Bucarest, 1975.

    Google Scholar 

  58. B. R. Gaines, ‘Foundations of Fuzzy Reasoning’, Int. J. Man-Machine Studies 8 (1976), 623–668.

    Article  Google Scholar 

  59. B. R. Gaines, ‘Stochastic and Fuzzy Logics’, Electronics Letters 2 (1975), 188–189.

    Article  Google Scholar 

  60. B. R. Gaines, ‘General Fuzzy Logics’, Man-Machine Systems Laboratory, University of Essex, Colchester, U.K., 1976.

    Google Scholar 

  61. L. Wittgenstein, ‘Logical Form’, Proc.. Aristotelian Soc. 9 (1929), 162–171.

    Google Scholar 

  62. M. Black, ‘Vagueness’, Philosophy of Science 4 (1937), 427–455.

    Article  Google Scholar 

  63. M. Black, ‘Reasoning with Loose Concepts’, Dialogue 2 (1963), 1–12.

    Article  Google Scholar 

  64. H. Khatchadourian, ‘Vagueness, Meaning and Absurdity’, American Philosophical Quarterly 2 (1965), 119–129.

    Google Scholar 

  65. R. R. Verma, ‘Vagueness and the Principle of Excluded Middle’, Mind 79 (1970), 66–77.

    Google Scholar 

  66. J. Goguen, ‘The Logic of Inexact Concepts’, Synthese 19 (1969), 325–373.

    Article  Google Scholar 

  67. E. Adams, ‘The Logic of “Almost All”’, J. Philosophical Logic 3 (1974), 3–17.

    Article  Google Scholar 

  68. E. H. Shortliffe and B. G. Buchanan, ‘A Model of Inexact Reasoning in Medicine’, Math. Biosciences 23 (1975), 351–379.

    Article  Google Scholar 

  69. N. Cliff, ‘Adverbs as Multipliers’, Psychology Review 66 (1959), 27–44.

    Article  Google Scholar 

  70. J. R. Ross, ‘A Note on Implicit Comparatives’, Linguistic Inquiry 1 (1970), 363–366.

    Google Scholar 

  71. B. B. Rieger, ‘Fuzzy Structural Semantics’, German Institute, Technical University of Aachen, Aachen, 1976. ( Third European Meeting on Cybernetics, Vienna. )

    Google Scholar 

  72. K. F. Machina, ‘Vague Predicates’, American Philosophical Quarterly 9 (1972), 225–233.

    Google Scholar 

  73. D. H. Sanford, ‘Borderline Logic’, American Philosophical Quarterly 12 (1975), 29–39.

    Google Scholar 

  74. E. W. Adams and H. P. Levine, ‘On the Uncertainties Transmitted from Premises to Conclusions in Deductive Inferences’, Synthese 30 (1975), 429–460.

    Article  Google Scholar 

  75. S. C. Wheeler, ‘Reference and Vagueness’, Synthese 30 (1975), 367–380.

    Article  Google Scholar 

  76. C. Wright, ‘On the Coherence of Vague Predicates’, Synthese 30 (1975), 325–365.

    Article  Google Scholar 

  77. K. Fine, ‘Vagueness, Truth and Logic’, Synthese 30 (1975), 265–300.

    Article  Google Scholar 

  78. I. F. Carlstrom, ‘Truth and Entailment for a Vague Quantifier’, Synthese 30 (1975), 461–495.

    Article  Google Scholar 

  79. R. Carnap, The Logical Syntax of Language, Harcourt, Brace & World, New York, 1937.

    Google Scholar 

  80. W. Quine, Word and Object, M.I.T. Press, Cambridge, Massachusetts, 1960.

    Google Scholar 

  81. R. Carnap, Meaning and Necessity, University of Chicago Press, Chicago, 1956.

    Google Scholar 

  82. Y. Bar-Hillel, Language and Information, Addison-Wesley, Reading, Massachusetts, 1964.

    Google Scholar 

  83. J. A. Fodor and J. J. Katz (eds.), The Structure of Language, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

    Google Scholar 

  84. J. J. Katz, The Philosophy of Language, Harper & Row, New York, 1966.

    Google Scholar 

  85. S. Ullmann, Semantics: An Introduction Jo the Science of Meaning, Blackwell, Oxford, 1962.

    Google Scholar 

  86. S. K. Shaumjan, Structural Linguistics, Nauka, Moscow, 1965.

    Google Scholar 

  87. R. Jacobson (ed.), On the Structure of Language and Its Mathematical Aspects, American Mathematical Society, Providence, R.I., 1961.

    Google Scholar 

  88. J. J. Katz, ‘Recent Issues in Semantic Theory’, Found. Language 3 (1967), 124–194.

    Google Scholar 

  89. G. Lakoff, ‘Linguistics and Natural Logic’, in Semantics of Natural Languages, D. Davidson and G. Harman (eds.), D. Reidel, Dordrecht, The Netherlands, 1971.

    Google Scholar 

  90. V. V. Nalimov, Probabilistic Model of Language, Moscow State University, Moscow, 1974.

    Google Scholar 

  91. S. Kripke, ‘Naming and Necessity’, in Semantics of Natural Languages, D. Davidson and G. Harman (eds.), D. Reidel, Dordrecht, The Netherlands, 1971.

    Google Scholar 

  92. D. K. Lewis, ‘General Semantics’, Synthese 22 (1970), 18–67.

    Article  Google Scholar 

  93. A. Tarski, ‘The Concept of Truth in Formalized Languages’, Studia Philosophica 1 (1936), 261–405. Translated in Logics, Semantics and Metamathematics, Clarendon Press, Oxford, 1956.

    Google Scholar 

  94. W. V. Quine, Philosophy of Logic, Prentice-Hall, Englewood Cliffs, New Jersey, 1970.

    Google Scholar 

  95. D. Greenwood, Truth and Meaning, Philosophical Library, New York, 1957.

    Google Scholar 

  96. S. P. Stitch, ‘Logical Form and Natural Language’, Philosophical Studies 28 (December 1975), 397–418.

    Article  Google Scholar 

  97. C. G. Hempel, ‘Inductive Inconsistencies’, in Logic and Language, B. H. Kazemier and D. Vuysje (eds.), D. Reidel, Dordrecht, The Netherlands, 1962, pp. 128–158.

    Google Scholar 

  98. R. Montague, Formal Philosophy (Selected Papers), R. H. Thomason (ed.), Yale University Press, New Haven, 1974.

    Google Scholar 

  99. M. J. Cresswell, Logics and Languages, Methuen and Co., London, 1973.

    Google Scholar 

  100. D. Davidson, ‘Truth and Meaning’, Synthese 17 (1967), 304–323.

    Article  Google Scholar 

  101. W. C. Kneale, ‘Propositions and Truth in Natural Languages’, Mind 81 (1972), 225–243.

    Article  Google Scholar 

  102. K. Lambert and B. C. Van Fraassen, ‘Meaning Relations, Possible Objects and Possible Worlds’, in Philosophical Problems in Logic, K. Lambert (ed.), D. Reidel, Dordrecht, The Netherlands, 1970.

    Chapter  Google Scholar 

  103. C. Parsons, ‘Informal Axiomatization, Formalization and the Concept of Truth’, Synthese 27 (1974), 27–47.

    Article  Google Scholar 

  104. A. Sloman, ‘Interactions Between Philosophy and Artificial Intelligence: The Role of Intuition and Nonlogical Reasoning in Intelligence’, Artificial Intelligence 2 (1971), 209–225.

    Article  Google Scholar 

  105. H. A. Simon, ‘The Structure of 111 Structured Problems’, Artificial Intelligence 4 (1973), 181–201.

    Article  Google Scholar 

  106. W. V. Quine, ‘Methodological Reflections on Current Linguistic Theory’, Synthese 21 (1970), 387–398.

    Article  Google Scholar 

  107. J. Searle (ed.), The Philosophy of Language, Oxford University Press, Oxford, 1971.

    Google Scholar 

  108. J. F. Staal, ‘Formal Logic and Natural Languages’, Foundations of Language 5 (1969), 256–284.

    Google Scholar 

  109. N. Rescher, Many-Valued Logic, McGraw-Hill, New York, 1969

    Google Scholar 

  110. D. E. Knuth, ‘Semantics of Context-free Languages’, Math. Systems Theory 2 (1968), 127–145.

    Article  Google Scholar 

  111. P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns, ‘Attributed Translations’, J. Computer and System Science 9 (1974), 279–307.

    Article  Google Scholar 

  112. G. Frege, Translations from the Philosophical Writings of G. Frege, P. T. Geach and M. Black (trans.), Blackwell, Oxford, 1952.

    Google Scholar 

  113. R. F. Simmons, ‘Semantic Networks, Their Computation and Use for Understanding English Sentences’, in Computer Models of Thought and Language, R. Schank and K. Colby (eds.), Prentice-Hall, Englewood Cliffs, New Jersey, 1973, pp. 63–113.

    Google Scholar 

  114. G. G. Hendrix, C. W. Thompson, and J. Slocum, ‘Language Processing via Canonical Verbs and Semantic Models’, Proc. 3rd Joint Int. Conf. on Artificial Intelligence, Stanford, 1973, pp. 262–269.

    Google Scholar 

  115. R. C. Schank, ‘Identification of Conceptualizations Underlying Natural Language’, in Computer Models of Thought and Language, R. Schank and M. Colby (eds.), Prentice-Hall, Englewood Cliffs, New Jersey, 1973, pp. 187–247.

    Google Scholar 

  116. D. Bobrow and A. Collins (eds.), Representation and Understanding, Academic Press, New York, 1975.

    Google Scholar 

  117. W. A. Woods, ‘What is a Link: Foundations for Semantic Networks’, in Representation and Understanding, D. Bobrow and A. Collins (eds.), Academic Press, New York, 1975, pp. 35–82.

    Google Scholar 

  118. D. A. Norman and D. E. Rumelhart (eds.), Explorations in Cognition, W. H. Free¬man Co., San Francisco, 1975.

    Google Scholar 

  119. C. J. Fillmore, ‘Toward a Modern Theory of Case’, in Modern Studies in English, Reibel and Schane (eds.), Prentice-Hall, Toronto, 1969, pp. 361–375.

    Google Scholar 

  120. W. A. Martin, ‘Translation of English into MAPL Using Winograd’s Syntax, State Transition Networks, and a Semantic Case Grammar’, M.I.T. APG Internal Memo 11, April 1973.

    Google Scholar 

  121. G. Epstein, G. Frieder, and D. Rine, ‘The Development of Multi-Valued Logic as Related to Computer Science’, Computer Magazine (Sept., 1974 ), 20–32.

    Google Scholar 

  122. I. Grattan-Guinness, ‘Fuzzy Membership Mapped Onto Interval and Many-Valued Quantities’, Middlesex Polytechnic, Enfield, U.K., 1974.

    Google Scholar 

  123. P. Suppes, ‘The Axiomatic Method in the Empirical Sciences’, Proc. Tarski Symp., Amer. Math. Soc., Providence, R.I., 1974.

    Google Scholar 

  124. B. R. Gaines and L. J. Kohout, ‘The Fuzzy Decade: A Bibliography of Fuzzy Systems and Closely Related Topics’, Int. J. of Man-Machine Studies 9 (1977), 1–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 D. Reidel Publishing Company Dordrecht-Holland

About this chapter

Cite this chapter

Bellman, R.E., Zadeh, L.A. (1977). Local and Fuzzy Logics. In: Dunn, J.M., Epstein, G. (eds) Modern Uses of Multiple-Valued Logic. Episteme, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1161-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1161-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1163-1

  • Online ISBN: 978-94-010-1161-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics