Skip to main content

Part of the book series: Mathematical Physics and Applied Mathematics ((MPAM,volume 1))

Abstract

One of the intriguing problems of the present day theory is the lack of similarity between general relativity and quantum mechanics General relativity is a product of a long evolution line of classical theories leading toward structural flexibility. The most characteristic steps of that evolution were: (1) the discovery of space-time geometry (stage of Minkowski space), (2) the generalization of the geometry (introduction of the pseudo-Riemannian manifolds), and (3) the discovery that geometry depends on matter. In spite of its classical character general relativity is an example of an evolved theory: its fundamental structure is not given a priori (apart from generalities concerning the category) but is conditioned by physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Davies, E. B. and Lewis, J. T., ‘An Axiomatic Approach to Quantum Probability’, Commun. Math. Phys. 17 (1970), 239.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Finkelstein, D., The Logic of Quantum Physics, N.Y. Acad. Sci., 1963, p. 621.

    Google Scholar 

  3. Gudder, S., ‘Convex Structures and Operational Quantum Mechanics’, Commun. Math. Phys. 29 (1973), 249.

    Article  MathSciNet  ADS  Google Scholar 

  4. Jauch, J. M. and Piron, C., ‘On the Structure of Quantal Proposition Systems’, Helr. Phys. Acta 42 (1969), 842.

    MathSciNet  MATH  Google Scholar 

  5. Ludwig, G., ‘Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien’, Z. Naturforsch. 22a (1967), 1303

    ADS  Google Scholar 

  6. Ludwig, G., ‘Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien’, Z. Naturforsch. 22a (1967), 1324.

    ADS  Google Scholar 

  7. Mielnik, B., ‘Theory of Filters’, Commun. Math. Phys. 15 (1969), 1; ‘Generalized Quantum Mechanics’ (to appear in Commun. Math. Phys.).

    Google Scholar 

  8. Piron, C., ‘Axiomatique quantique’, Helv. Phys. Acta 37 (1964), 439.

    MathSciNet  MATH  Google Scholar 

  9. Pool, J. C. T., ‘Semi-Modularity and the Logic of Quantum Mechanics’, Commun. Math. Phys. 9 (1968), 212.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Giles, R., ‘Axiomatics of Quantum Mechanics’, J. Math. Phys. 11 (1970), 2139.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Flato Z. Maric A. Milojevic D. Sternheimer J. P. Vigier

Rights and permissions

Reprints and permissions

Copyright information

© 1976 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Mielnik, B. (1976). Quantum Logic: Is It Necessarily Orthocomplemented?. In: Flato, M., Maric, Z., Milojevic, A., Sternheimer, D., Vigier, J.P. (eds) Quantum Mechanics, Determinism, Causality, and Particles. Mathematical Physics and Applied Mathematics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1440-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1440-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1442-7

  • Online ISBN: 978-94-010-1440-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics