Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 350))

Abstract

A comprehensive overview of the basic principles of radar polarimetry is presented. The relevant fundamental field equations are first provided in order to introduce the polarization state formulations of electromagnetic waves in the frequency domain, including the Jones and the Stokes vector formalism and its presentation on the Poincaré sphere and on relevant map projections. In a next step, the scattering matrices [S] and [M] are given together with change of polarization bases transformation operators, where upon the optimal (characteristic) polarization states are determined for the coherent and partially coherent cases, respectively. This chapter is concluded with a set of simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.P. Agrawal and W-M. Boerner, “Re-Development of Kennaugh’s Target Characteristic Polarization State Theory Using the Polarization Transformation Ratio Formalism for the Coherent Case”, IEEE Trans. GSRS, Vol. 27, No. 1, pp. 2–14, January (1989)

    Google Scholar 

  2. R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light, Amsterdam: North Holland, (1977)

    Google Scholar 

  3. P. Beckmann, The Depolarization of Electromagnetic Waves, Boulder, CO: The Golem Press, (1968)

    Google Scholar 

  4. P. Beckmann, and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces“, New York: MacMillan, (1963)

    Google Scholar 

  5. W-M. Boerner, “Polarization Utilization in Electromagnetic Inverse Scattering”, Chpt. 7-in Inverse Scattering Problems in Optics, ed. by H.P. Baltes, Vol. 2; Topics in Current Physics, Vol. 20, Heidelberg: Springer Verlag, July (1980), pp. 237–305

    Google Scholar 

  6. W-M. Boerner, et al. eds., Inverse Methods in Electromagnetic Imaging, Proc. NATO Advanced Res. Workshop on IMEI, Bad Windsheim, FR. Germany, Sept. 18–24, 1983, NATO ASI Series, Series C, Math. and Phys. Sci., Vol. 143, Dordrecht, Holland: D. Reidel Publ. Co., (1985)

    Google Scholar 

  7. W-M. Boerner, et al. (eds), Direct and Inverse Method in Radar Polarimetry, Proc. NATO-ARW-DIMRP (W-M. Boerner, Director), 1988 Sept. 18–24 Bad Windsheim FRG, NATO-ASI-Series C, (Math. and Phys. Sci.), Dordrecht/Boston: D. Reidel Publ. Co., (1989)

    Google Scholar 

  8. W-M. Boerner and H.P.S. Ahluwalia, “On a Set of Continuous Wave Electromagnetic Inverse Boundary Conditions”, Can.J. Phys., 50(23), pp. 3023–3061, Dec. 15, (1972) (also see: IEEE Trans. AP-21(5), pp. 663–672, May 1973; IEEE Trans. AP-22(5), pp. 673–682, May 1974; Can. J. Phys. 53, pp. 1404–1407, May 1975 )

    MATH  Google Scholar 

  9. W-M. Boerner, A.K. Jordan and I.W. Kay, “Introduction to the Special Issue on Inverse Methods in Electromagnetics”, in IEEE Trans., AP-29, Guest Editors, W-M. Boerner, A.K. Jordan, I.W. Kay, March 1989, pp. 185–189

    Google Scholar 

  10. W-M. Boerner, B-Y. Foo, H.J. Eom, “Interpretation of the Polar-imetric Co-Polarization Phase Term (41/21H-.VV) in High Resolution SAR Imaging Using the JPL CV-990 Polarimetric L-Band SAR Data”, Special IGARSS ‘85 Issue of the IEEE Trans. GE-25, No. 1, pp. 77–82, January (1987)

    Google Scholar 

  11. V.V. Bogorodsky, D.B. Kanareykin and A.E. Kozlov, Polarization of the Scattered Radio Radiation of the Earth Covers, Leningrad: Gidsometeorizdat, (in Russian ) (1981)

    Google Scholar 

  12. M. Born and E. Wolf, Principles of Optics, 3rd Ed., New York: Pergamon Press, (1964)

    Google Scholar 

  13. C-Y. Chan, “Studies on the Power Scattering Matrix of Radar Targets”, M.Sc. Thesis, Dept. of Electr. Engr. and Comp.Sci., University of Illinois at Chicago, Chicago, IL, (1981)

    Google Scholar 

  14. S.K. Chaudhuri, W-M. Boerner, “A Polarimetric Model for the Recovery of High-Frequency Scattering Centers from Bistatic-Monostatic Scattering Matrix Data”, IEEE Trans. AP A, p-35, No. 1, January 1987.

    Google Scholar 

  15. H.C. Chen, Theory of Electromagnetic Waves, New York: McGraw-Hill Book Company, (1983)

    Google Scholar 

  16. D. Clarke and J.F. Grainger, Polarized Light and Optical Measurement, Oxford: Pergamon Press, (1971)

    Google Scholar 

  17. R.E. Collin, Antennas and Radio Wave Propagation New York: McGraw Hill, N.Y.,(1985)

    Google Scholar 

  18. M. Davidovitz and W-M. Boerner, “Reduction of Bistatic Scattering Matrix Measurements for Inversely Symmetric Radar Targets”, IEEE Trans. AP-31, No. 2, March (1983)

    Google Scholar 

  19. M. Davidovitz and W-M. Boerner, “Extension of Kennaugh’s Optimal Polarization Concept to the Asymmetric Matrix Case”, IEEE Trans. AP-34(4), pp. 569–574, Apr. (1986)

    Google Scholar 

  20. G.A. Deschamps, “Part 2: Geometrical Representation of the Polariza-tion of a Plane Electromagnetic Wave”, Proc. IRE, Vol. 39, May (1951), pp. 540–544

    Google Scholar 

  21. G.A. Deschamps and P.E. Mast, “Poincaré Sphere Representation of Partially Polarized Fields”, IEEE Trans. AP-21(4), (1973), pp. 474–478

    Google Scholar 

  22. B-Y. Foo, S.K. Chaudhuri and W-M. Boerner, “A High Frequency Inverse Scattering Model to Recover the Specular Point Curvatures from Polarimetric Scattering Data”, IEEE Trans. AP-32, No. 11, pp. 1174–1178, Nov. (1984)

    Google Scholar 

  23. T. Gehrels, ed., “Planets, Stars and Nebulae Studied With Photopolari-metry”, Tucson, Arizona: The University of Arizona Press, (1974) ( Extensive Lists of Important References )

    Google Scholar 

  24. D. Giuli, “Polarization Diversity in Radar”, Proc. IEEE, Vol. 74 (2), pp. 245–269, Feb. (1986)

    Google Scholar 

  25. M.M. Gorshkov, Ellipsometry, Moscow: Sovetskoye Radio Press, (in Russian), (1974)

    Google Scholar 

  26. C.D. Graves, “Radar Polarization Power Scattering Matrix”, Proc. IRE, Vol. 44, Feb. (1956), pp. 248–252

    Google Scholar 

  27. Gregory E. Heath, “Bistatic Scattering Reflection Asymmetry, Polariza-tion Reversal Asymmetry, and Polarization Reversal Reflection Symmetry”, IEEE Trans. AP-29, No. 3, May (1987)

    Google Scholar 

  28. W.A. Hiltner, Polarization Measurements, Actron. Technique, Chicago: Chicago U. Press, (1962)

    Google Scholar 

  29. J.W. Hovenier, H.C. van de Hulst and C.V.M. van der Mee, “Conditions for the Elements of the Scattering Matrix”, J. Astron. and Astrophysics, Vol. 157, pp. 301–310, (1986)

    Google Scholar 

  30. J.R. Huynen, “Phenomenological Theory of Radar Targets”, Ph.D. Dissertation, Technical University, Delft, The Netherlands, (1970)

    Google Scholar 

  31. IEEE Standard Number 149–1979: Standard Test Procedures 1973, Revision of IEEE Stds. 145–1969, Definitions of Terms for Antennas, Published by the Institute of Electrical and Electronics Engineers, Inc., New York, (1979)

    Google Scholar 

  32. G.A. Ioannidis and D.E. Hammers, “Optimum Antenna Polarization for Target Discrimination in Clutter”, IEEE Trans. AP-27, May (1979), pp. 357–363

    Google Scholar 

  33. A. Ishimaru, Wave Propagation and Scattering in Random Media, New York: Academic Press, Inc., (1978)

    Google Scholar 

  34. R.C. Jones, “A New Calculus for the Treatment of Optical Systems”, I. Description and Discussion, pp. 488–493, II. Proof of the Three General Equivalence Theorems, pp. 493–499, III. The Sohnke Theory of Optical Activity, pp. 500–503, J. Opt. Soc. Am., July 31 1941 (also see: W. Swindell, Polarized Light, Stroudsburg, PA: Halsted Press/John Wiley and Sons, 1975, pp. 186–240 )

    Google Scholar 

  35. D.B. Kanareykin, N.F. Pavlov and V.A. Potekhin, The Polarization of Radar Signals, Moscow: Sovyet Radio, Chap. 1–10 (in Russian), (1966); (English Translation of Chpts. 10–12: Radar Polarization Effects, New York: CCM Int. Corp., G.Collier and McMillan, (900 Third Ave, New York, N.Y. 10023 )

    Google Scholar 

  36. D.B. Kanareykin, V.A. Potekhin, and M.F. Shisikin, Maritime Polarimetry, Leningrad: Sudostroyenie, (1968)

    Google Scholar 

  37. E.M. Kennaugh, “Polarization Properties of Radar Reflections”, M.Sc. Thesis, Dept. of Elec. Engr., The Ohio State University, Columbus, OH, 43212, (1952); (also see: Proc. of the RandD Board Symposium on Radar Reflection Studies, Sept. 1950 )

    Google Scholar 

  38. G.P. Können, Polarized Light in Nature, English Translation, Cambridge, U.K.: Cambridge University Press, (1985)

    Google Scholar 

  39. A.B. Kostinski and W-M. Boerner,“On Foundations of Radar Polarimetry”, IEEE AP-34, No. 12, pp. 1395–1404, also see: comments by H. Mieras, pp. 1470–1471, and author’s reply, pp. 1471–1473, Dec. (1986)

    Google Scholar 

  40. A.B. Kostinski and W-M. Boerner, “On the Polarimetric Contrast Optimization”, IEEE Trans. AP-35, No. 8, pp. 988–991, August (1987)

    Google Scholar 

  41. A.B. Kostinski, B.D. James and W-M. Boerner, “On the Optimal Reception of Partially Polarized Waves”, J. Optical Society of America, Part A, Optics and Image Sciences, Series 2, Vol. 5, No. 1, pp. 58–64, Jan. 1988

    Google Scholar 

  42. A.B. Kostinski, B.D. James and W-M. Boerner, “Polarimetric Matched Filter for Coherent Imaging”, Can J. Phys., Vol. 66, Issue 10, Special Issue on Coherent Imaging in Optics, pp. 871–877, Oct. (1988)

    Google Scholar 

  43. A.L. Kozlov, “Radar Contrast of Two Objects”, Izvestiya Vuz., Radioelektronika, Vol. 22, No. 7, July (1979), pp. 63–67

    Google Scholar 

  44. J.D. Kraus, Electromagnetics, New York: McGraw-Hill Book Company, (1984)

    Google Scholar 

  45. M.W. Long, Radar Reflectivity of Land and Sea, Lexington, MA: Lexington Books, D.C. Heath and Company, (1975)

    Google Scholar 

  46. H. Mott, Polarization in Antennas and Radar, Englewood Cliffs, N.Y.: John Wiley and Sons, Inc., (1986)

    Google Scholar 

  47. F. Pearson II, Map Projections: Theory and Applications Boca Raton, Florida, CRC Press, Inc. (1990) (Also see C.H. Deetz and D.S. Adams, Elements of Map Projection Washington: United States Government Printing Office, (195)).

    Google Scholar 

  48. A.J. Poelman and J.R.F. Guy, “Polarization Information Utilization in Primary Radar: An Introduction and Update to Activities at Shape Technical Center”, Proc. NATO-ARK on IMEI, Bad Windsheim, FR. Germany, Sept. 18–24, (1983), Session RP.5, Section III: Paper No. III. 2, pp. 521–572

    Google Scholar 

  49. H. Poincaré, Théorie Mathématique de la Lumière, II-12, Paris: Georges Carré Publ. Co., (1892), pp. 282–285

    Google Scholar 

  50. A.P. Rodimov and V.V Popovski, “Statistical Theory of Polarimetric Temporal Signal and Clutter Processing in Communication (propagation paths and lines)”, Moscow, Vol. 21 in Series of Statistical Communications, Moscow: Radio and Comm., (1984) (in Russian)

    Google Scholar 

  51. I.W. Root, Chairman, Workshop on “Polarimetric Radar Technology”, June 25–26, 1982, USA-MICOM-DRSMI-REG, Redstone Arsenal, Proc., Vol. 1, published by GACIAC IITRI, 10 W. 35th St., Chicago, IL 60615, GACIAC pr-81–02, Feb. (1981)

    Google Scholar 

  52. L.W. Root and Matkin, Chairman/Editors, Proceedings, (Third) Polarimetric (Technology) Workshop, Redstone Arsenal, AL., 1988 August 16–18, GACIAC IIT-RI, 10 W. 35th St., Chicago, IL 60612, (1989)

    Google Scholar 

  53. G.E. Schilov, Linear Algebra, New York: Dover, (1977)

    Google Scholar 

  54. W.A. Shurcliff, Polarized Light, Cambridge, MA: Harvard Press, 1962 )

    Google Scholar 

  55. G. Sinclair, “The Transmission and Reception of Elliptically Polarized Waves”, Proc. IRE, Vol. 38, Feb. 1950, pp. 148–151

    Article  Google Scholar 

  56. M.E. Skolnik, Radar Handbook, New York: McGraw-Hill, (1970)

    Google Scholar 

  57. G. Strang, Linear Algebra and Its Applications, New York: Academic, (1976)

    MATH  Google Scholar 

  58. J.A. Stratton, Electromagnetic Theory, New York: McGraw-Hill, (1941)

    MATH  Google Scholar 

  59. W. Swindell, Polarized Light, Stroudsburg, PA: Halsted Press, (1975)

    Google Scholar 

  60. F.T. Ulaby, R.K. Moore and A.K. Fung, Microwave Remote Sensing: Vols. 1–3, Reading, MA: Addison-Wesley, (1981)

    Google Scholar 

  61. Dr. Ing. Dissertation, Universität Karlsruhe, Karlsruhe, FRG, (Fortschritts- Berichte VDI, Reihe 10, Nr. 97, Düsseldorf: VDI-Verlag, 1988 )

    Google Scholar 

  62. A-Q. Xi and W-M. Boerner, “The Characteristic Radar Target Polarization State Theory for the Coherent Monostatic and Reciprocal Case Using the Generalized Polarization Transformation Ratio Formulation”, to appear in: AEÜ, Vol. 44, No. 4, pp. 273–281, July/Aug. 1990

    Google Scholar 

  63. Y. Yamaguchi, K. Sasagawa, M. Sengoku, T. Abe, W-M. Boerner, W-L. Yan and A-Q. Xi, “Characteristic Polarization States of Coherently Reflected Waves Based on the Stokes Vector Formulation”, Japan Journal for Electronics and Communications Engineering (JECE), Vol., Sept. 1990, in print.

    Google Scholar 

  64. Yan and Boerner

    Google Scholar 

  65. L.A. Zhivotovskiy, “Optimum Polarization of Radar Signals”, Radio Eng. and Electronic Phys., (1814), 1973, pp. 630–632

    Google Scholar 

  66. J.J. van Zyl, “On the Importance of Polarization in Radar Scattering Problems”, Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, January (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boerner, WM., Yan, WL., Xi, AQ., Yamaguchi, Y. (1992). Basic Concepts of Radar Polarimetry. In: Boerner, WM., et al. Direct and Inverse Methods in Radar Polarimetry. NATO ASI Series, vol 350. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9243-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9243-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9245-6

  • Online ISBN: 978-94-010-9243-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics