Skip to main content

Control of Batch Reactors: A Review

  • Chapter
Methods of Model Based Process Control

Part of the book series: NATO ASI Series ((NSSE,volume 293))

Abstract

Because of the structural change in industry from mass production to the production of small amount of various products with high added value, batch processing has come to the fore in the nineties. In the competitive atmosphere of today, batch chemical reactors are pinpointed as where better performance can be obtained through better process control. Due to their intrinsic characteristics, however, the control of batch reactors involves complex control functionality beyond the well-established norms for continuous processes, and constitutes a challenging area. This paper reviews the progress in the field of batch reactor control. Particular developments in model based control that have been applied to batch reactors, theoretical and experimental experience reported in literature are addressed. Some main directions of current activities are highlighted and suggestions for further research are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scriven, L.E. (1987) The role of past, current and future technologies in chemical enginering, Chem. Eng. Progress, 83(12), 65–69.

    Google Scholar 

  2. Love, J. (1987) Batch process control, The Chemical Engineer, June, 34–35.

    Google Scholar 

  3. Downs, J.J. and Doss, J.E. (1991) A view form north American industry, in Y. Arkun and W.H. Ray (eds), Proceedings of CPC IV, CACHE, Austin — TX and Elsevier, Amsterdam, pp. 53–77.

    Google Scholar 

  4. Rippin, D.W.T. (1989) Control of batch processes, IFAC Dynamics and Control of Chemical Reactors (DYCORD+’89), Maastricht, The Netherlands, pp. 131–141.

    Google Scholar 

  5. Reklaitis, G.V. (1992) Overview of scheduling and planning of batch process operations, NATO-ASI on Batch Processing Systems Engineering, Antalya-Turkey, May 29-June 7. (in G.V. Reklaitis, D.W.T. Rippin and A. Sunol, eds., Proceedings to be published by Pergamon Press, Oxford)

    Google Scholar 

  6. Leach, D.B. (1986) Specifying a batch-process control system, Chemical Engineering, December, 115–122.

    Google Scholar 

  7. Bashan, Y. and Handelsman, M. (1987) Microcomputer-based control of a batch process, Chemical Engineering January, 123–125.

    Google Scholar 

  8. Modell, D.J. (1989) DCS for batch process control, Chemical Engineering, May, 97–103.

    Google Scholar 

  9. Lim, V.C., Ray, R.M. (1989) Small batch reactor control system integration, ISA Transactions 28, 9–15.

    Article  Google Scholar 

  10. Ghosh, A. (1980) Checklist for batch process computer control, Chem. Engng. February 25, 88–91.

    Google Scholar 

  11. Shaw, W.T. (1983) Stuctured desing produces good batch control programs, Control Engineering, November, 72–76.

    Google Scholar 

  12. Craig, L.W. (1989) Control structure for batch reactor control, Plant/Operations Progress, 8, 35–39.

    Article  Google Scholar 

  13. Shinskey, F.G. and Weinstein, J.L. (1965) A dual mode control system for a batch exothermic reactor, Presented at the ISA Conference, 4–7. Oct. 1965, L.A. Calif.

    Google Scholar 

  14. Schrock, L.J. (1965) Minimum-time batch processing ISA J. 12, October, 75–82.

    Google Scholar 

  15. King, P.E. and Skaates, J.M. (1969) Two position control of batch repolymerization reactor, Ind. Eng. Chem. Proc. Des. Dev. 8, 114–119.

    Article  Google Scholar 

  16. Kladko, M. (1971) The case of a real engineering desing problem, Chem TECH March, 141–147.

    Google Scholar 

  17. Marroquin, G., Luyben, W.L. (1972) Experimental evaluation of nonlinear cascade controllers for batch reactors, Ind. Eng. Chem. Fundam. 11, 552–556.

    Article  Google Scholar 

  18. Koppel, L.B. and Latour, P.R. (1965) Time optimum control of second order overdamped systems with transportation lag, Ind. Engng. Chem. Fundam. 4, 463–471.

    Article  Google Scholar 

  19. Latour, P.R., Koppel, L.B. and Coughanowr, D.R. (1967) Time optimum control of chemical processes for set point changes, Ind. Engng. Chem., Process Des. Dev. 6, 452–460.

    Article  Google Scholar 

  20. Latour, P. R., Koppel, L.B. and Coughanowr, D.R. (1968) Feedback time-optimum process controllers, Ind. Engng. Chem., Process Des. Dev. 7, 345–353.

    Article  Google Scholar 

  21. Marroquin, G., Luyben, W.L. (1973) Praticai control studies of batch reactors using realistic mathematical models, Chem. Eng. Sci. 28, 993–1003.

    Article  Google Scholar 

  22. Amrehn, H. (1977) Computer control in the polymerization industry, A utomatica, 13, 533–545.

    Google Scholar 

  23. Liptak, B.G. (1986) Controlling and optimizing chemical reactors, Chemical Engineering, May 26, 69–81.

    Google Scholar 

  24. Juba, M.R. and Hamer, J.W. (1986) Progress and challenges in batch process control, Chemical Process Control, CPC III, M. Morari and T.J. McAvoy (eds.), AIChE, CACHE Austin TX and Elsevier, Amsterdam, 139–183.

    Google Scholar 

  25. Jutan, A. and Uppal, A. (1984) Combined feedforward-feedback servo control scheme for an exothermic batch reactor, Ind. Eng. Chem. Process Des. Dev. 23, 597–602.

    Article  Google Scholar 

  26. Rippin, D.W.T. (1983) Simulation of single and multiproduct batch chemical plants for optimal design and operation, Computers Chem. Engng. 7, 37.

    Google Scholar 

  27. Kozub, D.J. and MacGregor, J.F. (1992) Satate estimation for semi batch polymerization reactors, Chem. Eng. Sci. 47, 1047–1062.

    Article  Google Scholar 

  28. Kravaris, C. and Chung, C.B. (1987) Nonlinear state feedback synthesis by global input/output linearization, AIChE J. 33, 592–603.

    Article  MathSciNet  Google Scholar 

  29. Calvet, J.P. and Arkun, Y. (1988) Feedforward and feedback linearization of nonlinear systems and its implementation using internal model control, Ind. Eng. Chem. Res. 27, 1822–1831.

    Article  Google Scholar 

  30. Henson, M.A. and Seborg, D.E. (1990) Input-output linearization of general nonlinear processes, AIChE J. 36. 1753–1757.

    Article  Google Scholar 

  31. McLellan, P., Harris, T.J. and Bacon, D.W. (1990) Error trajectory descriptions, Chem. Eng. Sci. 45, 3017–3034.

    Article  Google Scholar 

  32. Kravaris, C., Wright, R.A. and Carrier, J.F. (1989) Nonlinear controllers for trajectory tracking in batch processes, Computers Chem. Eng. 13, 73–82.

    Article  Google Scholar 

  33. Wang, Z.L., Corriou, J.P and Pla, F. (1994) Nonlinear adaptive control of batch polymerization, Computers Chem. Engng. 18, S397–S401.

    Article  Google Scholar 

  34. Liu, P.L. (1967) Noninteracting process control, Ind. Eng. Chem. Process Des. Dev. 6, 460–467.

    Article  Google Scholar 

  35. Boye, A.J. and Brogen, W.L. (1986) A nonlinear system controller, Int. J. Control 44, 1209–1218.

    Article  MATH  Google Scholar 

  36. Lee, P. L. and Sullivan, G. R. (1988) Generic model control., Computers chem. Engng.,12, 573–580.

    Article  Google Scholar 

  37. Bartusiak, R.D., Georgakis, C. and Reilly, M.J. (1989) Nonlinear feedforward-feedback control structures designed by reference system synthesis, Chem. Eng. Sci. 44, 1837–1851.

    Article  Google Scholar 

  38. Bhat, J., Chidambaram, M. and Madhavan, K.P. (1991) Nonlinear feedback control of a CSTR, Chem. Eng. Commun. 101, 131–145.

    Article  Google Scholar 

  39. Cott, B.J. and Macchietto, S. (1989) Temperature control of exothermic batch reactors using generic model control, Ind. Eng. Chem. Res. 28, 1177–1184.

    Article  Google Scholar 

  40. Bhat, J., Chidambaram, M. and Madhavan, K.P. (1990) Robust control of batch reactors, Chem. Eng. Commun. 87, 195–204.

    Article  Google Scholar 

  41. Youcef-Toumi, K. and Ito, O. (1987) Controller design for systems with unknown nonlinear dynamics, Proc. American Control Conf., 836–844.

    Google Scholar 

  42. Chidambaram, M. and Malleswararao, Y.S.N. (1992) Model reference control of on-linear systems with relative order two: Application to a semibatch reactor, J. Proc. Cont. 2, 9–15.

    Article  Google Scholar 

  43. Rao, Y.S.M., Bhat, J., Chidambaram, M. and Madhavan, K.P. (1992) Robust controllers for nonlinear chemical processes, Computers Chem. Eng. 16, 61–65

    Article  Google Scholar 

  44. Freund, E. (1975) The structure of decoupled nonlinear systems. Int. J. Cont. 21, 443–450.

    Article  MathSciNet  MATH  Google Scholar 

  45. Åström, K.J. and Wittenmark, B.W. (1973) Self-tuning regulators, Automatica 10, 185–199.

    Article  Google Scholar 

  46. Clarke, D.W. and Gawthrop, P.J. (1975) Self-tuning controller, Proc. IEEE 122, 29–934.

    Google Scholar 

  47. Isermann, R. (1982) Parameter adaptive control algorithms — A tutorial, Automatica 18, 513–528.

    Article  MathSciNet  MATH  Google Scholar 

  48. Åström, K.J. (1983) Theory and applications of adaptive control — A Survey, Automatica 19, 471–486.

    Article  MATH  Google Scholar 

  49. Clarke, D.W. and Gawthrop, P.J. (1981) Implementation and application of microprocessor-based self-tuners, Automatica 17, 233–244.

    Article  Google Scholar 

  50. Niederlinski, A., Moscinski, J., Kasprzyk, J. and Warczykowski, P. (1985) The application of self-tuning control to an industrial PVC batch reactor, Proc. IFAC Symp. Adaptive Control of Chemical Processes, Frankfurt am Main, pp. 193–198.

    Google Scholar 

  51. Fortescue, T.R. Kershenbaum, L.S. and Ydstie, B.E. (1981) Implementation of self-tuning regulators with variable forgetting factors, Automatica 17, 831–835.

    Article  Google Scholar 

  52. Clarke, D.W., Mohtadi, C., Tuffs, P. S. (1987) Generalized predicitive control-Part I.The basic algorithm, Automatica 23, 137–148.

    Article  MATH  Google Scholar 

  53. Clarke, D.W., Mohtadi, C., Tuffs, P. S. (1987) Generalized predicitive control-Part I.I. Extensions and interpretation, Automatica 23, 149–160.

    Article  MATH  Google Scholar 

  54. Cabassud, M., Le Latin, M.V., Chamayou, A., Casamatta, G. (1989) Modeling and adaptive control of a batch reactor, Dechema-Monographs 116, 81–89.

    Google Scholar 

  55. Tzouanas,V.K., Shah, S.L. (1989) Adaptive pole-assignment control of a batch polymerization reactor, Chem. Eng. Science 44, 1183–1193.

    Article  Google Scholar 

  56. Martin-Sanchez, J. M., Shah, S. L. and Fisher, D. G., (1984), A stable adaptive predictive control system. Int. J. Control. 39, No. 1, 215–234.

    Article  MathSciNet  MATH  Google Scholar 

  57. Martin-Sanchez, J. M. (1984) A globally stable APCS in the presence of bounded noises and disturbances, IEEE Trans. Aut. Contr. Vol. AC-29, 461–464.

    Article  Google Scholar 

  58. Wang, F., Lin,Y. (1991) Adaptive pole removal control for a batch polymerization reactor, Chem. Eng. Technol. 14, 240–247.

    Article  Google Scholar 

  59. Ydstie, B.E. (1986) Adaptive control, Proc. CPC — III, M. Morari and T.J. McAvoy, (eds), AIChE-CACHE, Austin TX and Elsevier, Amsterdam, pp. 421–426.

    Google Scholar 

  60. Ydstie, B.E. (1987) Adaptive process control, Chem. Eng. Res. Des. 65, 480–489.

    Google Scholar 

  61. Najim, K and M’saad, M. (1991) Adaptive control: theory and practical aspects, J. Proc. Cont. 1, 84–95.

    Article  Google Scholar 

  62. Rafalimanana, A., Cabassud, M., Le Lann, M.V. and Casamatta, G. (1992) Adaptive control of multipurpose and flexible semi-batch pilot plant reactor, Computers Chem. Eng. 16, 837–848.

    Article  Google Scholar 

  63. Kiparissides, C., Shah, S.L. (1983) Self-tuning and stable adaptive control of a batch polymerization reactor, Automatica 19, 225–235.

    Article  MATH  Google Scholar 

  64. Cluett, W.R., Shah, S.L. and Fisher, D.G. (1985) Adaptive control of a batch reactor, Chem. Eng. Commun. 38, 67–78.

    Article  Google Scholar 

  65. Song, H. K., (1983), Derivation and experimental evaluation of a stable adaptive conroller, Ph.D. Thesis, Department of Chemical Engineering, University of Alberta, Edmonton, Canada.

    Google Scholar 

  66. Jarupintusophon, P., Le Lann, M.V., Cabassud, M., Casamatta, G. (1994) Realistic model based predictive and adaptive control of batch reactors, Computers chem. Engng. 18, S445–S449.

    Article  Google Scholar 

  67. Åkesson, I. (1985) Adaptive automatic control of reaction speed in exothermal batch processes, Proc. IFAC Symp. Adaptive Control of Chemical Processes, Frankfurt am Main, 99–102.

    Google Scholar 

  68. Takamatsu, T., Shioya, S. and Okada, Y. (1988) Molecular weight distribution control in a batch polymerization, Ind. Engng. Chem. Res. 27, 93–99.

    Article  Google Scholar 

  69. Garcia, C. E., Morari, M. (1982) Internal model control-1. A unifying review and some new results, Ind. Eng. Chem. Process Des. Dev. 21, 308–323.

    Article  Google Scholar 

  70. Merkle, J.E. and Lee, W.K. (1989) Adaptive strategies for automatic startup and temperature control of a batch process, Computers chem. Engng. 13, 87–103

    Article  Google Scholar 

  71. De Keyser, R.M.C. and Van Cauwenberghe, A.R. (1981) A self-tuning multistep predictor application, Automatica 17, 167–174.

    Article  Google Scholar 

  72. Ydstie, B.E., Kersheribaum, L.S., Sargent, R.W.H. (1985) Theory and application of an extended horizon self-tuning controller, AlChEJ. 31, 1771–1780.

    Article  Google Scholar 

  73. Bierman, G.J. (1976) Measurement updating using U-D factorization, Automatica 2, 375–382.

    Article  MathSciNet  Google Scholar 

  74. Le Lann, M.V., Cabassud, M., Casamatta, G. (1995) Adaptive model predictive control, in R. Berber (ed.) Methods of Model Based Process Control, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  75. Defaye, G., Regnier, N., Chabanon, J., Caralp, L. and Vidal, C. (1993) Adaptive-predictive temperature control of semi-batch reactors, Chem. Eng. Sci. 48, 3373–3382.

    Article  Google Scholar 

  76. Ljung, L. (1987), System Identification: Theory for the User. Prentice-Hall, Englewood Clifts, NJ.

    MATH  Google Scholar 

  77. Irving E., Barret, J.P., Charcossey, C. and Monville, J.P. (1979) Improving power network stability and unit stress with adaptive generator control, Automatica 15, 31–46.

    Article  MATH  Google Scholar 

  78. Richalet, J., Rault, A., Testud, J.L. and Papon, J. “Model Predictive Heuristic Control: Applications to Industrial Processes”, Automatica 14, 413–428 (1978).

    Article  Google Scholar 

  79. Prett, D.M. and Garcia, C.E. (1988) Fundamental Process Control, Butterworths, Boston.

    Google Scholar 

  80. Cheng, C.M. and Brosilow, C.B. (1987) Model predictive control of unstable processes, AIChE Annual Meeting, New York.

    Google Scholar 

  81. Hidalgo, P.M. and Brosilow, C.B. (1990) Nonlinear model predictive control of styrene polymerization at unstable operating points, Computers chem. Engng. 14, 481–494.

    Article  Google Scholar 

  82. Peterson, T., Hernandez, Y., Arkun, Y. and Schork, F.J. (1992) A nonlinear DMC algorithm and its application to a semibatch polymerization reactor, Chem. Eng. Sci. 47, 737–753.

    Article  Google Scholar 

  83. Karaduman, A. and Berber, R. (1992) Simple model predictive control studies on a batch polymerization reactor, NATO-ASI on Batch Processing Systems Engineering, Antalya-Turkey, May 29-June 7. (in G.V. Reklaitis, D.W.T. Rippin and A. Sunol, A., eds., Proceedings to be published by Pergamon Press, Oxford).

    Google Scholar 

  84. Karaduman, A. and Berber, R. (1993) Nonlinear model predictive control of a batch polymerization reactor, Unpublished work.

    Google Scholar 

  85. Murty, B.S.N., Gangiah, K. and Husain, A. (1980) Performance of various methods in computing optimal control policies, The Chem. Eng. J. 19, 201–208.

    Article  MathSciNet  Google Scholar 

  86. Westerholt, V., Beard, J.N. and Melsheimer, S.S. (1991) Time-optimal startup control algorithm for batch processes, Ind. Eng. Chem. Res. 30, 1205–1212.

    Article  Google Scholar 

  87. Ponnuswamy, S.R.; Shah, S.L. and Kiparissides, C.A. (1987) Computer optimal control of batch polymerization reactors, Ind. Eng. Chem. Res., 26, 2229–2236.

    Article  Google Scholar 

  88. Young, M.J. (1980) Semibatch reactions offer optimal yields, Processing, March, 27–33.

    Google Scholar 

  89. Cuthrell, J.E., Biegler, L.T. (1989) Simultaneous optimization and solution methods for batch reactor control profiles, Comput. Chem. Eng. 13, 49–62.

    Article  Google Scholar 

  90. Secchi, A.R., Lima, E.L. and Pinto, J.C. (1990) Constrained optimal batch polymerization reactor control, Polymer Eng. Sci. 30, 1209–1219.

    Article  Google Scholar 

  91. Koppel, B. (1968) Introduction to Control Theory with Applications to Process Control, Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  92. Kwon, Y.D. and Evans, L.B. (1975) A coordinate transformation method for the numerical solution of nonlinear minimum-time control problems, AIChE J. 21, 1158–1164.

    Article  MathSciNet  Google Scholar 

  93. Ray, W.H. (1981) Advanced Process Control Mc Graw-Hill, New York.

    Google Scholar 

  94. Eaton, J.W.and Rawlings, J.B. (1990) Feedback control of chemical processes using on-line optimization techniques, Computers chem. Engng. 14, 469–479.

    Article  Google Scholar 

  95. Palanki, S., Kravaris, C. and Wang, H.Y. (1993) Synthesis of state feedback laws for end-point optimization in batch processes, Chem. Eng. Sci. 48, 135–152.

    Article  Google Scholar 

  96. Palanki, S., Kravaris, C. and Wang, H.Y. (1994) Optimal feedback control of batch reactors with a state inequality constraint and free terminal time, Chem. Eng. Sci. 49, 85–97.

    Article  Google Scholar 

  97. Tsoukas, A., Tirrell, M. and Stephanopoulos, G. (1982) Multiobjective dynamic optimization of semibatch copolymerization reactors. Chem. Eng. Sci. 37, 1785–1795.

    Article  Google Scholar 

  98. Cawthon, G.D. and Knaebel, K.S., (1989) Optimization of semibatch polymerization reactions, Comput. Chem. Engng., 13, 63–72.

    Article  Google Scholar 

  99. Mayne, D.Q. (1995) Optimization in model predictive control, in R. Berber (ed.) Methods of Model Based Process Control, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  100. Agarwal, M. (1992) A perspective on estimation and prediction for batch reactors, Paper presented at NATO-ASI on Batch Processing Systems Engineering, Antalya-Turkey, May 29-June 7. (in G.V. Reklaitis, D.W.T. Rippin and A. Sunol eds. Proceedings to be published by Pergamon Press, Oxford).

    Google Scholar 

  101. Jazwinski, A.H. (1970) Stochastic Processes and Filtering Theory, Academic Press, New York.

    MATH  Google Scholar 

  102. Jang, S.S., Joseph, B. and Mukai, H. (1986) Comparision of two approaches to online parameter and state estimation of nonlinear systems, Ind. Eng. Chem. Process Des. Dev. 25, 809–813.

    Article  Google Scholar 

  103. Kozub, D.J. and MacGregor, J.F. (1992) Feedback control of polymer quality in semi-batch polymerization reactors, Chem. Eng. Sci. 47, 929–942.

    Article  Google Scholar 

  104. Wardle, A.P., Alpbaz, M., Menta, A., Vennor-Morris, D. and Halksworth, D. (1988) Control of the heat input to a batch reactor, I. Chem. E. Sym. Ser. 105, 89–99.

    Google Scholar 

  105. Man, A. and Rodriguez, E.S. (1987) Application of parametric control concepts to decoupler and heating control design for a batch reactor, Can. J. Chem. Eng. 65, 858–866.

    Article  Google Scholar 

  106. Soroush, M. and Kravaris, C. (1992) Nonlinear control of a batch polymerization reactor: an experimental study, AIChE Journal 38, 1429–1448.

    Article  Google Scholar 

  107. Poppiel, L., Matsko, T. and Brosilow, W. (1986) Coordinated control, in Chemical Process Control-CPC III, M. Morari and T.J. McAvoy (eds), AIChE-CACHE, Austin TX and Elsevier, Amsterdam, pp. 295–319.

    Google Scholar 

  108. Katoh, N., Nakao, K., Hanawa, M. (1989) Learning control of a batch reactor, Computers chem. Engng. 13, 1273–1276.

    Article  Google Scholar 

  109. Kawamura, S., Miyazaki, F. and Arimoto, S. (1986) Proposal of beterment process: a learning control method for dynamical systems Keisoku Jido Seigyo-Gakkai Ronbunsyu, 22, 56 (in Japanese).

    Google Scholar 

  110. Shin, S. and Kitamori, T. (1986) Model reference learning control for discrete time, linear, time varying systems, Keisoku Jido Seigyo-Gakkai Ronbunsyu 22, 835 (in Japanese).

    Google Scholar 

  111. Filippi, C., Greffe, J.L., Bordet, J., Villermaux, J., Barnay, J.L., Ponte, B. and Georgakis, C. (1986) Tendency modeling of semibatch reactors for optimization and control, Chem. Eng. Sci. 41, 913–920.

    Article  Google Scholar 

  112. Georgakis C. (1992) Tendency models for estimation, optimization and control of batch processes, Paper presented at NATO-ASI on Batch Processing Systems Engineering, May 29-June 7. (in G.V. Reklaitis, D.W.T. Rippin and A. Sunol, A. eds. Proceedings to be published by Pergamon Press, Oxford).

    Google Scholar 

  113. Engell, S. and Heckenthaler, T. (1995) Fuzzy control — An alternative to model based control?, in R. Berber (ed.) Methods of Model Based Process Control, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  114. King, P.J. and Mamdani, E. H. (1977) The application of fuzzy control system to industrial processes, Automatica 13, 235–242.

    Article  Google Scholar 

  115. Liu, M. (1985) A case design of fuzzy temperature control for chemical reactor, Control and Instruments in Chemical Industry, 12, 20–26 (in Chinese).

    Google Scholar 

  116. Rong, G. (1986) Microcomputer control of a pilot batch polymerization reactor and investigation of fuzzy control algorithms, M. S. Thesis, Khejiang Un. (in Chinese).

    Google Scholar 

  117. Yamada, Y., Haneda, K., Murayama, S. and Shiomi, S. (1991) Application of fuzzy control system to coenzyme Q 10 fermentation, J. Chem. Eng. Japan, 24, 94–99.

    Article  Google Scholar 

  118. Besli, N., Türker, M. and Gül, E. (1994) Design and simulation of a fuzzy controller for fed-batch fermentation, Accepted for publication in Bioprocess Eng.

    Google Scholar 

  119. Shioya, S. (1992) Optimization and Control in Fed-Batch Bioreactors, in A. Fiechter (Managing Editor) Advances in Biochemical Engineering/Biotechnology-Vol 46, Springer-Verlag, Berlin, Heidelberg, pp. 111–142.

    Google Scholar 

  120. Stephanopoulos, G., and San, K.Y.(1984) Studies on online bioreactor identification-I Theory, Biotech. Bioeng. 26, 1176–1188.

    Article  Google Scholar 

  121. San, K.Y. and Stephanopoulos, G. (1984) Studies on online bioreactor identification-II. Numerical and experimental results, Biotech. Bioeng. 26, 1189–1197.

    Article  Google Scholar 

  122. Van Breugel, J., van Eyberger, G.Ch., Overwater, A.J., Honderd, G. and Verbruggen, H.B. (1985) Computer control of an aerobic batch process in a two reactor system, Proc. IFAC Symp. Modeling and Control of Biotechnological Processes, Noordwijkerhout, pp. 63–67.

    Google Scholar 

  123. Postlethwaite, B.E. (1989) A fuzzy state estimator for fed-batch fermentation, Chem. Eng. Res. Des. 67, 267–272.

    Google Scholar 

  124. Dairaku, K. Yamasaki, Y. and Kazuo K. (1981) Maximum production in a bakers’ yeast fed-batch culture by a tubing method, Biotech. Bioeng. 23, 2069–2081.

    Article  Google Scholar 

  125. Giesecke, U.E., Bierbaum, G., Rudde, H., Spohn, U. and Wandrey, C. (1991) Production of alkaline protease with Bacillus licheniformis in a controlled fed-batch process, Appl. Microbial Bioech. 35, 720–724

    Google Scholar 

  126. Mou, D.G. and Cooney, C.L. (1983) Growth monitoring and control through computer aided ordirne mass balancing in a fed batch penicillin fermentation, Biotech.Bioeng. 25, 225–255.

    Article  Google Scholar 

  127. Staniškis, J. and Levišauskas, D. (1984) An adaptive control algorithm for fed-batch culture, Biotech. Bioeng. 26, 419–425.

    Article  Google Scholar 

  128. Lee, S.C., Hwang, Y.B., Chang, H.N. and Chang, Y.K. (1991) Adaptive control of dissolved oxygen concentration in a bioreactor, Biotechn. Bioeng. 37, 597–607.

    Article  Google Scholar 

  129. Wang, H., Cooney, C.L. and Wang, D.I.C. (1979) Computer control of bakers’ yeast fermentation, Biotech. Bioeng. 21, 975–995.

    Article  Google Scholar 

  130. Constantinides, A., Spencer, J.L. and Gaden, E.L. (1970) Optimization of batch fermentation processes-I. Development of mathematical models for batch penicillin fermentations, Biotech. Bioeng. 12, 803–830.

    Article  Google Scholar 

  131. Constantinides, A., Spencer, J.L. and Gaden, E.L. (1970) Optimization of batch fermentation processes-II. Optimum temperature profiles for batch penicillin fermentations, Biotech. Bioeng. 12, 1081–1098.

    Article  Google Scholar 

  132. Olmo, H. and Nakanishi, E. (1976) Optimal control of semibatch fermentation, Biotech. Bioeng. 18, 847–864.

    Article  Google Scholar 

  133. Guthke, R. and Knorre, W.A. (1981) Optimal substrate profile for antibiotic fermentations, Biotech. Bioeng. 23, 2771–2777.

    Article  Google Scholar 

  134. San, K.Y. and Stephanopoulos, G. (1984) A note on the optimaliry criteria for maximum biomass production in a fed-batch fermentor, Biotech. Bioeng. 26, 1261–126

    Article  Google Scholar 

  135. Takamatsu, T., Shioya, S., Chikkatani, H. and Dairaku, K. (1985) Comparison of simple population models in a bakers’ yeast fed batch culture, Chem. Eng. Sci. 40, 499–507.

    Article  Google Scholar 

  136. Cazzador, L. (1988) On the optimal control of fed-batch reactors with substrate-inhibited kinetics, Biotech. Bioeng. 31, 670–674.

    Article  Google Scholar 

  137. Garcia, Prett and Morari (1989) Model predictive control: Theory and practice-A survey, Automatica, 25, 335–348.

    Article  MATH  Google Scholar 

  138. Lauglin, D.L., Jordan, K.G. and Morari, M. (1986) Internal model control and process uncertainty: mapping uncertainty regions for SISO controller design, Int. J. Control, 44, 1675–1698.

    Article  Google Scholar 

  139. Morari, M. (1988) Robust process control, Chem. Eng. Res. Des. 65, 462–479.

    Google Scholar 

  140. McDonald, K.A., Palazoğlu, A. and Bequette, B. W.(1988) Impact of model uncertainty descriptions for high purity distillation column, AIChE J. 34, 1996–2004.

    Article  Google Scholar 

  141. Sistu, P.B. and Bequette, B.W. (1991) Nonlinear predictive control of uncertain processes: application to a CSTR, AIChE J. 37, 1711–1723.

    Article  Google Scholar 

  142. Laiseca, M. and Brosilow, C. (1992) Tuning control systems for parametric uncertainty, Paper presented at American Control Conference, Chicago.

    Google Scholar 

  143. Genceli, H., Vuthandam, P. and Nikolaou, M. (1995) Analysis and synthesis methods for robust model predictive control, in R. Berber (ed.) Methods of Model Based Process Control, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  144. Zheng, A. and Morari, M. (1995) Robust control of linear time-varying systems with constraints, in R. Berber (ed.) Methods of Model Based Process Control, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berber, R. (1995). Control of Batch Reactors: A Review. In: Berber, R. (eds) Methods of Model Based Process Control. NATO ASI Series, vol 293. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0135-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0135-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4061-7

  • Online ISBN: 978-94-011-0135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics