Skip to main content

Assimilatory Nitrogen Metabolism and Its Regulation

  • Chapter
The Molecular Biology of Cyanobacteria

Part of the book series: Advances in Photosynthesis ((AIPH,volume 1))

Summary

The element nitrogen (N) constitutes about 5–10% of the dry weight of a cyanobacterial cell. The purpose of this chapter is to review the assimilatory pathways which in free-living cyanobacteria lead from different extracellular N-sources to cellular N-containing components. Inorganic nitrogen in the form of ammonium is incorporated into glutamine and glutamate via the glutamine synthetase/glutamate synthase cycle. The glnA gene, encoding glutamine synthetase, has been characterized in a number of cyanobacteria. Glutamate (and glutamine) distribute N to other organic compounds by means of transaminases, and glutamate is itself a precursor of some other nitrogenous metabolites. Ammonium can be taken up from the external medium by the cyanobacterial cell, but it can also be derived from other nutrients, essentially N2, nitrate and urea. Many cyanobacteria are able to fix N2 under aerobic conditions. Strategies for protecting nitrogenase from O2 in cyanobacteria include the temporal separation of nitrogenase activity and photosynthetic O2 evolution, and in some filamentous cyanobacteria, the differentiation of heterocysts (cells specialized in N2 fixation). A detailed characterization of nif genes has only been performed in a heterocyst-forming cyanobacterium. Nitrate reduction has been found to use photosynthetically reduced ferredoxin as an electron donor, and genes encoding nitrate transport and reduction proteins have been identified and shown to constitute an operon. Some amino acids like arginine and glutamine can also contribute N to some cyanobacteria; however, urea and amino acid utilization have been poorly investigated thus far. Pathways of N assimilation in cyanobacteria are induced upon ammonium deprivation, ammonium being the preferred N source. A gene, ntcA, encoding a transcriptional regulator required for expression of proteins subjected to nitrogen control has been identified. A major theme for future research is how information about the N status of the cell is sensed and transduced to the protein(s) effecting regulation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames GFL and Joshi AK (1990) Energy coupling in bacterial periplasmic permeases. J Bacteriol 172: 4133–4137.

    PubMed  CAS  Google Scholar 

  • Andriesse X, van Arkel G and Weisbeek P (1990) Cloning of the nitrate reductase gene of Synechococcus PCC 7942. Third Intl Symp on NO3 - Assimilation: Molecular and Genetic Aspects. Bombanes, Abstracts p 98.

    Google Scholar 

  • Argali ME, Smith GD, Stamford NPJ and Youens BN (1992) Purification and properties of urease from the cyanobacterium Anabaena cylindrica. Biochem Intl 6: 1027–1036.

    Google Scholar 

  • Arizmendi JM and Serra JL (1990) Purification and some properties of the nitrite reductase from the cyanobacterium Phormidium laminosum. Biochim Biophys Acta 1040: 237–244.

    PubMed  CAS  Google Scholar 

  • Arizmendi JM, Fresnedo O, Martínez-Bilbao M, Alaña A and Serra JL (1987) Inorganic nitrogen assimilation in the non-N2-fixing cyanobacterium Phormidium laminosum. II. Effect of the nitrogen source on the nitrite reductase levels. Physiol Plant 70: 703–707.

    CAS  Google Scholar 

  • Barnum SR and Gendel SM (1985) Organization of nitrogen fixation genes in a nonheterocystous, filamentous cyanobacterium. FEMS Microbiol Lett 29: 339–342.

    CAS  Google Scholar 

  • Batt T and Brown DH (1974) The influence of inorganic nitrogen supply on amination and related reactions in the blue-green alga, Anabaena cylindrica Lemm. Planta 116: 27–37.

    CAS  Google Scholar 

  • Bauer C Scappino L and Haselkorn R (1993) Growth of the cyanobacterium Anabaena on molecular nitrogen: NifJ is required when iron is limited. Proc Natl Acad Sci USA 90: 8812–8816.

    PubMed  CAS  Google Scholar 

  • Bergman B, Siddiqui PJA, Carpenter DJ and Peschek GA (1993) Cytochrome oxydase: Subcellular distribution and relationship to nitrogenase expression in the nonheterocystous marine cyanobacterium Trichodesmium thiebautii. Appl Environm Microbiol 59: 3239–3244.

    CAS  Google Scholar 

  • Berns DS, Holohan P and Scott E (1966) Urease activity in blue-green algae. Science 152: 1077–1078.

    PubMed  CAS  Google Scholar 

  • Benz R and Böhme H (1985) Pore formation by an outer membrane protein of the cyanobacterium Anabaena variabilis. Biochim Biophys Acta 812: 286–292.

    CAS  Google Scholar 

  • Blanco F, Alaña A, Llama MJ and Serra JL (1989) Purification and properties of glutamine synthetase from the non-N2-fixing cyanobacterium Phormidium laminosum. J Bacteriol 171: 1158–1165.

    PubMed  CAS  Google Scholar 

  • Böhm I, Halbherr A, Smaglinski S, Ernst A and Böger P (1992) In vitro activation of dinitrogenase reductase from the cyanobacterium Anabaena variabilis (ATCC 29413). J Bacteriol 174: 6179–6183.

    PubMed  Google Scholar 

  • Böhme H and Haselkorn R (1988) Molecular cloning and nucleotide sequence analysis of the gene coding for heterocyst ferredoxin from the cyanobacterium Anabaena sp. strain PCC 7120. Mol Gen Genet 214: 278–285.

    Google Scholar 

  • Borthakur D, Basche M, Buikema WJ, Borthakur PB and Haselkorn R (1990) Expression, nucleotide sequence and mutational analysis of two open reading frames in the nif gene region of Anabaena sp. strain PCC 7120. Mol Gen Genet 221: 227–234.

    PubMed  CAS  Google Scholar 

  • Bottomley PJ, Van Baalen C and Tabita FR (1980) Heterocyst differentiation and tryptophan metabolism in the cyanobacterium Anabaena sp. CA. Arch Biochem Biophys 203: 204–213.

    CAS  Google Scholar 

  • Boussiba S (1989) Ammonia uptake in the alkalophilic cyanobacterium Spirulina platensis. Plant Cell Physiol 30: 303–308.

    CAS  Google Scholar 

  • Boussiba S, Dilling W and Gibson J (1984a) Methylammonium transport in Anacystis nidulans R-2. J Bacteriol 160: 204–210.

    PubMed  CAS  Google Scholar 

  • Boussiba S, Resch CM and Gibson J (1984b) Ammonia uptake and retention in some cyanobacteria. Arch Microbiol 138: 287–292.

    CAS  Google Scholar 

  • Cai Y and Wolk CP (1993) Differential effects of a hetR mutation on the expression of genes of Anabaena PCC 7120 that are directly involved in heterocyst differentiation and those that are not. Fourth Cyanobacterial Workshop in Molecular Genetics, 1993. Abstracts, p 26. Asilomar (Pacific Grove, CA), Abstracts p 26.

    Google Scholar 

  • Candau P (1979) Purificación y propiedades de la ferredoxina-nitrato reductasa de la cianobacteria Anacystis nidulans. Ph D Thesis, Universidad de Sevilla, Sevilla.

    Google Scholar 

  • Candau P, Manzano C and Losada M (1976) Bioconversion of light energy into chemical energy through reduction with water of nitrate to ammonia. Nature 262: 715–717.

    CAS  Google Scholar 

  • Capone DG, O’Neil JM, Zehr J and Carpenter EJ (1990) Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium thiebautii. Appl Env Microbiol 56: 3532–3536.

    CAS  Google Scholar 

  • Carpenter EJ and Price CC (1976) Marine Oscillatoria (Trichodesmium): Explanation for aerobic nitrogen fixation without heterocysts. Science 191: 1278–1280.

    PubMed  CAS  Google Scholar 

  • Carpenter EJ and Romans K (1991) Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic ocean. Science 254: 1356–1358.

    PubMed  CAS  Google Scholar 

  • Carvajal N, Fernández M, Rodríguez JP and Donoso M (1982) Urease of Spirulina maxima. Phytochemistry 21: 2821–2823.

    CAS  Google Scholar 

  • Chan MK, Kim J and Rees DC (1993) The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 Å resolution structures. Science 260: 792–794.

    PubMed  CAS  Google Scholar 

  • Chapman JS and Meeks JC (1983) Glutamine and glutamate transport by Anabaena variabilis. J Bacteriol 156: 122–129.

    PubMed  CAS  Google Scholar 

  • Chávez S and Candau P (1991) An NAD-specific glutamate dehydrogenase from cyanobacteria. Identification and properties. FEBS Lett 285: 35–38.

    PubMed  Google Scholar 

  • Chen C, Van Baalen C and Tabita FR (1987) DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain IF. J Bacteriol 169: 1114–1119.

    CAS  Google Scholar 

  • Cohen-Kupiec R, Gurevitz M and Zilberstein A (1993) Expression of glnA in the cyanobacterium Synechococcus sp. strain PCC 7942 is initiated from a single nif-like promoter under various nitrogen conditions. J Bacteriol 175: 7727–7731.

    PubMed  CAS  Google Scholar 

  • Currier TC and Wolk CP (1978) Regulation of uridylic acid biosynthesis in the cyanobacterium Anabaena variabilis. J Bacteriol 136: 682–687.

    PubMed  CAS  Google Scholar 

  • Dean DR and Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH and Evans HJ (eds) Biological Nitrogen Fixation, pp 763–834. Chapman & Hall, New York.

    Google Scholar 

  • Dean DR, Bolin JT and Zheng L (1993) Nitrogenase metalloclusters: Structures, organization, and synthesis. J Bacteriol 175: 6737–6744.

    PubMed  CAS  Google Scholar 

  • Dharmawardene MWN, Stewart WDP and Stanley SO (1972) Nitrogenase activity, amino acid pool patterns and amination in blue-green algae. Planta 108: 133–145.

    CAS  Google Scholar 

  • Elmorjani K, Liotenberg S, Houmard J and Tandeau de Marsac N (1992) Molecular characterization of the gene encoding glutamine synthetase in the cyanobacterium Calothrix sp. PCC 7601. Biochem Biophys Res Commun 189: 1296–1302.

    PubMed  CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56: 340–373.

    PubMed  CAS  Google Scholar 

  • Fillat MF, Borrias WE and Weisbeek PJ (1991) Isolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119. Biochem J 280: 187–191.

    PubMed  CAS  Google Scholar 

  • Fisher R, Tuli R and Haselkorn R (1981) A cloned cyanobacterial gene for glutamine synthetase functions in Escherichia coli, but the enzyme is not adenylylated. Proc Natl Acad Sci USA 78: 3393–3397.

    PubMed  CAS  Google Scholar 

  • Florencio FJ and Ramos JL (1985) Purification and characterization of glutamine synthetase from the unicellular cyanobacterium Anacystis nidulans. Biochim Biophys Acta 838: 39–48.

    CAS  Google Scholar 

  • Florencio F J, Marqués S and Candau P (1987) Identification and characterization of a glutamate dehydrogenase in the unicellular cyanobacterium Synechocystis PCC 6803. FEBS Lett 223: 37–41.

    CAS  Google Scholar 

  • Flores E and Muro-Pastor MI (1988) Uptake of glutamine and glutamate by the dinitrogen-fixing cyanobacterium Anabaena sp. PCC7120. FEMS Microbiol Lett 56: 127–130.

    CAS  Google Scholar 

  • Flores E and Muro-Pastor AM (1990) Mutational and kinetic analysis of basic amino acid transport in the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 154: 521–527.

    CAS  Google Scholar 

  • Flores E, Guerrero MG and Losada M (1980) Short-term ammonium inhibition of nitrate utilization by Anacystis nidulans and other cyanobacteria. Arch Microbiol 128: 137–144.

    CAS  Google Scholar 

  • Flores E, Guerrero MG and Losada M (1983a) Photosynthetic nature of nitrate uptake and reduction in the cyanobacterium Anacystis nidulans. Biochim Biophys Acta 722: 408–416.

    CAS  Google Scholar 

  • Flores E, Ramos JL, Herrero A and Guerrero MG (1983b) Nitrate assimilation by cyanobacteria. In: Papageorgiou GC and Packer L (eds) Photosynthetic Prokaryotes: Cell Differentiation and function, pp 363–387. Elsevier, New York.

    Google Scholar 

  • Flores E, Romero JM, Guerrero MG and Losada M (1983c) Regulatory interaction of photosynthetic nitrate utilization and carbon dioxide fixation in the cyanobacterium Anacystis nidulans. Biochim Biophys Acta 725: 529–532.

    CAS  Google Scholar 

  • Flores E, Herrero A and Guerrero MG (1987) Nitrite uptake and its regulation in the cyanobacterium Anacystis nidulans. Biochim Biophys Acta 896: 103–108.

    CAS  Google Scholar 

  • Floriano B, Herrero A and Flores E (1992) Isolation of arginine auxotrophs, cloning by mutant complementation, and sequence analysis of the argC gene from the cyanobacterium Anabaena species PCC 7120. Mol Microbiol 6: 2085–2094.

    PubMed  CAS  Google Scholar 

  • Forchhammer K and Tandeau de Marsac N (1994) The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bacteriol 176: 84–91.

    PubMed  CAS  Google Scholar 

  • Frías JE, Mérida A, Herrero A, Martín-Nieto J and Flores E (1993) General distribution of the nitrogen control gene ntcA in cyanobacteria. J Bacteriol 175: 5710–5713.

    PubMed  Google Scholar 

  • Fujita Y, Takahashi Y, Shonai F, Ogura Y and Matsubara H (1991) Cloning, nucleotide sequences and differential expression of the nifH and nifH-like (frxC) genes from the filamentous nitrogen-fixing cyanobacterium Plectonema boryanum. Plant Cell Physiol 32: 1093–1106.

    CAS  Google Scholar 

  • Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ and Rees DC (1992) Crystallographic structure of the nitrogenase iron protein form Azotobacter vinelandii. Science 257: 1653–1659.

    PubMed  CAS  Google Scholar 

  • Gupta M and Carr NG (1981) Enzymology of arginine metabolism in heterocyst-forming cyanobacteria. FEMS Microbiol Lett 12: 179–181.

    CAS  Google Scholar 

  • Hall GC and Jensen RA (1980) Enzymological basis for growth inhibition by L-phenylalanine in the cyanobacterium Synechocystis sp. 29108. J Bacteriol 144: 1034–1042.

    PubMed  CAS  Google Scholar 

  • Haselkorn R (1992) Developmentally regulated gene rearrangements in prokaryotes. Ann Rev Genet 26: 111–128.

    Google Scholar 

  • Haselkorn R and Buikema WJ (1992) Nitrogen fixation in cyanobacteria. In: Stacey G, Burris RH and Evans HJ (eds) Biological Nitrogen Fixation, pp 166–190. Chapman & Hall, New York.

    Google Scholar 

  • Hattori A and Myers J (1967) Reduction of nitrate and nitrite by subcellular preparations of Anabaena cylindrica. II. Reduction of nitrate to nitrite. Plant Cell Physiol 8: 327–337.

    CAS  Google Scholar 

  • Hattori A and Uesugi I (1968) Purification and properties of nitrite reductase from the blue-green alga Anabaena cylindrica. Plant Cell Physiol 9: 689–699.

    CAS  Google Scholar 

  • Haystead A, Dharmawardene MWN and Stewart WDP (1973) Ammonia assimilation in a nitrogen-fixing blue-green alga. Plant Sci Lett 1: 439–445.

    CAS  Google Scholar 

  • Healey FP (1977) Ammonium and urea uptake by some freshwater algae. Can J Bot 55: 61–69.

    CAS  Google Scholar 

  • Herrero A and Flores E (1990) Transport of basic amino acids by the dinitrogen-fixing cyanobacterium Anabaena PCC 7120. J Biol Chem 265: 3931–3935.

    PubMed  CAS  Google Scholar 

  • Herrero A and Guerrero MG (1986) Regulation of nitrite reductase in the cyanobacterium Anacystis nidulans. J Gen Microbiol 132: 2463–2468.

    CAS  Google Scholar 

  • Herrero A and Wolk CP (1986) Genetic mapping of the chromosome of the cyanobacterium, Anabaena variabilis. Proximity of the structural genes for nitrogenase and ribulose-bisphosphate carboxylase. J Biol Chem 261: 7748–7754.

    PubMed  CAS  Google Scholar 

  • Herrero A, Flores E and Guerrero MG (1981) Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans, Anabaena sp. strain 7119, and Nostoc sp. strain 6719. J Bacteriol 145: 175–180.

    PubMed  CAS  Google Scholar 

  • Herrero A, Flores E and Guerrero MG (1984) Regulation of the nitrate reductase level in Anacystis nidulans: Activity decay under nitrogen stress. Arch Biochem Biophys 234: 454–459.

    PubMed  CAS  Google Scholar 

  • Herrero A, Flores E and Guerrero MG (1985) Regulation of nitrate reductase cellular levels in the cyanobacteria Anabaena variabilis and Synechocystis sp. FEMS Microbiol Lett 26: 21–25.

    CAS  Google Scholar 

  • Hien NT, Kerby NW, Machray GC, Rowell P and Stewart WDP (1988) Expression of glutamine synthetase in mutant strains of the cyanobacterium Anabaena variabilis which liberate ammonia. FEMS Microbiol Lett 56: 337–342.

    CAS  Google Scholar 

  • Hirschberg R, Samson SM, Kimmel BE, Page KA, Collins JJ, Myers JA and Yarbrough LR (1985) Cloning and characterization of nitrogenase genes from Anabaena variabilis. J Biotech 2: 23–37.

    CAS  Google Scholar 

  • Hoare DS and Hoare SL (1966) Feedback regulation of arginine biosynthesis in blue-green algae and photosynthetic bacteria. J Bacteriol 92: 375–379.

    PubMed  CAS  Google Scholar 

  • Hoare DS, Hoare SL and Moore RB (1967) The photoassimilation of organic compounds by autotrophic blue-green algae. J Gen Microbiol 49: 351–370.

    CAS  Google Scholar 

  • Holm-Hansen O and Brown GW (1963) Ornithine cycle enzymes in the blue-green alga Nostoc muscorum. Plant Cell Physiol 4: 299–306.

    CAS  Google Scholar 

  • Houchins JP (1984) The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim Biophys Acta 768: 227–255.

    CAS  Google Scholar 

  • Huang TC and Chou WM (1991) Setting of the circadian N2-fixing rhythm of the prokaryotic Synechococcus sp. RF-1 while its nif gene is repressed. Plant Physiol 96: 324–326.

    PubMed  CAS  Google Scholar 

  • Huang TC and Chow TJ (1988) Comparative studies of some nitrogen-fixing unicellular cyanobacteria isolated from rice fields. J Gen Microbiol 134: 3089–3097.

    CAS  Google Scholar 

  • Huang TC and Chow TJ (1990) Characterization of the rhythmic nitrogen-fixing activity of Synechococcus sp. RF-1 at the transcription level. Curr Microbiol 20: 23–26.

    Google Scholar 

  • Kallas T, Rebière MC, Rippka R and Tandeau de Marsac N (1983) The structural nif genes of the cyanobacteria Gloeothece sp. and Calothrix sp. share homology with those of Anabaena sp., but the Gloeothece genes have a different arrangement. J Bacteriol 155: 427–431.

    PubMed  CAS  Google Scholar 

  • Kallas T, Coursin T and Rippka R (1985) Different organization of nif genes in nonheterocystous and heterocystous cyanobacteria. Plant Mol Biol 5: 321–329.

    CAS  Google Scholar 

  • Kapp R, Stevens SE and Fox JL (1975) A survey of available nitrogen sources for the growth of the blue-green alga, Agmenellum quadruplicatum. Arch Microbiol 104: 135–138.

    PubMed  CAS  Google Scholar 

  • Kentemich T, Danneberg G, Hundeshagen B and Bothe H (1988) Evidence for the occurrence of the alternative, vanadium-containing nitrogenase in the cyanobacterium Anabaena variabilis. FEMS Microbiol Lett 51: 19–24.

    CAS  Google Scholar 

  • Kentemich T, Haverkamp G and Bothe H (1991) The expression of a third nitrogenase in the cyanobacterium Anabaena variabilis. Z Naturforsch 46c: 217–222.

    Google Scholar 

  • Kim J and Rees DC (1992) Crystallographic stucture and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 360: 553–560.

    CAS  Google Scholar 

  • Kim J and Rees DC (1993) Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257: 1677–1682.

    Google Scholar 

  • Kim J and Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33: 387–397.

    Google Scholar 

  • Kratz WA and Myers J (1955) Nutrition and growth of several blue-green algae. Amer J Bot 42: 282–287.

    CAS  Google Scholar 

  • Kuhlemeier CJ, Logtenberg T, Stoorvogel W, van Heugten HAA, Borrias WE and van Arkel GA (1984a) Cloning of nitrate reductase genes from the cyanobacterium Anacystis nidulans. J Bacteriol 159: 36–41.

    PubMed  CAS  Google Scholar 

  • Kuhlemeier CJ, Teeuwsen VJP, Janssen MJT and van Arkel GA (1984b) Cloning of a third nitrate reductase gene from the cyanobacterium Anacystis nidulans R2 using a shuttle cosmid library. Gene 31: 109–116.

    PubMed  CAS  Google Scholar 

  • Labarre J, Thuriaux P and Chauvat F (1987) Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. strain 6803. J Bacteriol 169: 4668–4673.

    PubMed  CAS  Google Scholar 

  • Lara C, Romero JM and Guerrero MG (1987) Regulated nitrate transport in the cyanobacterium Anacystis nidulans. J Bacteriol 169: 4376–4378.

    PubMed  CAS  Google Scholar 

  • Lawrie AC (1979) Effect of carbamoyl phosphate on nitrogenase in Anabaena cylindrica Lemm. J Bacteriol 139: 115–119.

    PubMed  CAS  Google Scholar 

  • Lawrie AC, Codd GA and Stewart WDP (1976) The incorporation of nitrogen into products of recent photosynthesis m Anabaena cylindrica Lemm. Arch Microbiol 107: 15–24.

    PubMed  CAS  Google Scholar 

  • Lea PJ and Miflin BJ (1975) Glutamate synthase in blue-green algae. Bichem Soc Trans 3: 381–384.

    CAS  Google Scholar 

  • Leonhardt KG and Straus NA (1989) Sequence of the flavodoxin gene from Anabaena variabilis 7120. Nucl Acids Res 17:4384.

    PubMed  CAS  Google Scholar 

  • Luque I, Herrero A, Flores E and Madueño F (1992) Clustering of genes involved in nitrate assimilation in the cyanobacterium Synechococcus. Mol Gen Genet 232: 7–11.

    PubMed  CAS  Google Scholar 

  • Luque I, Flores E and Herrero A (1993) Nitrite reductase gene from Synechococcus sp. PCC 7942: Homology between cyanobacterial and higher-plant nitrite reductases. Plant Mol Biol 21: 1201–1205.

    PubMed  CAS  Google Scholar 

  • Luque I, Flores E and Herrero A (1994a) Nitrate and nitrite transport in the cyanobacterium Synechococcus sp. PCC 7942 are mediated by the same permease. Biochim Biophys Acta 1184: 296–298.

    CAS  Google Scholar 

  • Luque I, Flores E and Herrero A (1994b) Molecular mechanism for the operation of nitrogen control in cyanobacteria. Embo J, in press.

    Google Scholar 

  • Mackerras AH and Smith GD (1986) Urease activity of the cyanobacterium Anabaena cylindrica. J Gen Microbiol 132: 2749–2752.

    CAS  Google Scholar 

  • Madueño F, Flores E and Guerrero MG (1987) Competition between nitrate and nitrite uptake in the cyanobacterium Anacystis nidulans. Biochim Biophys Acta 896: 109–112.

    Google Scholar 

  • Madueño F, Borrias WE, Van Arkel GA and Guerrero MG (1988a) Isolation and characterization of Anacystis nidulans R2 mutants affected in nitrate assimilation: Establishment of two new mutant types. Mol Gen Genet 213: 223–228.

    Google Scholar 

  • Madueño F, Vega-Palas MA, Flores E and Herrero A (1988b) A cytoplasmic-membrane protein repressible by ammonium in Synechococcus R2: Altered expression in nitrate-assimilation mutants. FEBS Lett 239: 289–291.

    Google Scholar 

  • Magasanik B and Neidhardt FC (1987) Regulation of carbon and nitrogen utilization. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M and Umbarger HE (eds) Escherichia coli and Salmonella typhimurium.: Cellular and Molecular Biology, pp 1318–1325. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Manzano C (1977) La reducción fotosintética del nitrato en el alga verde-azulada Anacystis nidulans. Ph D Thesis, Universidad de Sevilla, Sevilla.

    Google Scholar 

  • Manzano C, Candau P, Gómez-Moreno C, Relimpio AM and Losada M (1976) Ferredoxin-dependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans. Mol Cell Biochem 10: 161–169.

    PubMed  CAS  Google Scholar 

  • Marqués S, Florencio FJ and Candau P (1992a) Purification and characterization of the ferredoxin-glutamate synthase from the unicellular cyanobacterium Synechococcus sp. PCC 6301. Eur J Biochem 206: 69–77.

    PubMed  Google Scholar 

  • Marqués S, Mérida A, Candau P and Florencio FJ (1992b) Light-mediated regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechococcus sp. PCC 6301. Planta 187: 247–253.

    Google Scholar 

  • Martel A, Jansson E, García-Reina G and Lindblad P (1993) Ornithine cycle in Nostoc PCC 73102. Arginase, OCT and arginine deiminase, and the effects of addition of external arginine, ornithine, or citrulline. Arch Microbiol 159: 506–511.

    CAS  Google Scholar 

  • Martín-Nieto J, Herrero A and Flores E (1989) Regulation of nitrate and nitrite reductases in dinitrogen-fixing cyanobacteria and Nif mutants. Arch Microbiol 151: 475–478.

    Google Scholar 

  • Martín-Nieto J, Flores E and Herrero A (1990) Mutants of Anabaena variabilis requiring high levels of molybdate for nitrate reductase and nitrogenase activities. FEMS Microbiol Lett 67: 1–4.

    Google Scholar 

  • Martín-Nieto J, Herrero A and Flores E (1991) Control of nitrogenase mRNA levels by products of nitrate assimilation in the cyanobacterium Anabaena sp. strain PCC 7120. Plant Physiol 97: 825–828.

    PubMed  Google Scholar 

  • Martín-Nieto J, Flores E and Herrero A (1992) Biphasic kinetic behavior of nitrate reductase from heterocystous, nitrogen-fixing cyanobacteria. Plant Physiol 100: 157–163.

    PubMed  Google Scholar 

  • Martínez-Bilbao M, Alaña A, Arizmendi JM and Serra JL (1987) Inorganic nitrogen assimilation in the non-N2-fixing cyanobacterium Phormidium laminosum. I. Cellular levels of glutamine synthetase and NADPH-dependent glutamate dehydrogenase. Physiol Plant 70: 697–702.

    Google Scholar 

  • Martínez-Bilbao M, Martínez A, Urkijo I, Llama MJ and Serra JL (1988) Induction, isolation and some properties of the NADPH-dependent glutamate dehydrogenase from the nonheterocystous cyanobacterium Phormidium laminosum. J Bacteriol 170: 4897–4902.

    PubMed  Google Scholar 

  • Maryan PS, Eady RR, Chaplin AE and Gallon JR (1986) Nitrogen fixation by Gloeothece sp. PCC 6909: Respiration and not photosynthesis supports nitrogenase activity in the light. J Gen Microbiol 132: 789–796.

    CAS  Google Scholar 

  • Mazur BJ, Rice D and Haselkorn R (1980) Identification of blue-green algal nitrogen fixation genes by using heterologous DNA hybridization probes. Proc Natl Acad Sci USA 77: 186–190.

    PubMed  CAS  Google Scholar 

  • Meeks JC, Wolk CP, Thomas J, Lockau W, Shaffer PW, Austin SM, Chien WS and Galonsky A (1977) The pathways of assimilation of 13NH4 + by the cyanobacterium, Anabaena cylindrica. J Biol Chem 252: 7894–7900.

    PubMed  CAS  Google Scholar 

  • Meeks JC, Wolk CP, Lockau W, Schilling N, Shaffer PW and Chien WS (1978) Pathways of assimilation of [13N]N2 and 13NH4 + by cyanobacteria with and without heterocysts. J Bacteriol 134: 125–130.

    PubMed  CAS  Google Scholar 

  • Meeks JC, Wycoff KL, Chapman JS and Enderlin CS (1983) Regulation of expression of nitrate and dinitrogen assimilation by Anabaena species. Appl Environm Microbiol 45: 1351–1359.

    CAS  Google Scholar 

  • Méndez JM and Vega JM (1981) Purification and molecular properties of nitrite reductase from Anabaena sp. 7119. Physiol Plant 52: 7–14.

    Google Scholar 

  • Méndez JM, Herrero A and Vega JM (1981) Characterization and catalytic properties of nitrite reductase from Anabaena sp. 7119. Z Pflanzenphysiol 103: 305–315.

    Google Scholar 

  • Mérida A, Leurentop L, Candau P and Florencio FJ (1990) Purification and properties of glutamine synthetases from the cyanobacteria Synechocystis sp. strain PCC 6803 and Calothrix sp. strain PCC 7601. J Bacteriol 172: 4732–4735.

    PubMed  Google Scholar 

  • Mérida A, Candau P and Florencio FJ (1991) Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: Effect of ammonium. J Bacteriol 173: 4095–4100.

    PubMed  Google Scholar 

  • Mérida A, Flores E and Florencio FJ (1992) Regulation of Anabaena sp. strain PCC 7120 glutamine synthetase activity in a Synechocystis sp. strain PCC 6803 derivative strain bearing the Anabaena glnA gene and a mutated host glnA gene. J Bacteriol 174: 650–654.

    PubMed  Google Scholar 

  • Mikami B and Ida S (1984) Purification and properties of ferredoxin-nitrate reductase from the cyanobacterium Plectonema boryanum. Biochim Biophys Acta 791: 294–304.

    CAS  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S and Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323: 720–722.

    CAS  Google Scholar 

  • Miyaji T and Tamura G (1992) Isolation and partial characterization of homogeneous nitrite reductase from a cyanobacterium, Aphanothece sacrum. Biosci Biotech Biochem 56: 1333–1334.

    CAS  Google Scholar 

  • Mulligan ME and Haselkorn R (1989) Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. The nifB-fdxN-nifS-nifU Operon. J Biol Chem 264: 19200–19207.

    PubMed  CAS  Google Scholar 

  • Mulligan ME, Buikema WJ and Haselkorn R (1988) Bacterial-type ferredoxin genes in the nitrogen fixation regions of the cyanobacterium Anabaena sp. strain PCC 7120 and Rhizobium meliloti. J Bacteriol 170: 4406–4410.

    PubMed  CAS  Google Scholar 

  • Mullineaux PM, Gallon JR and Chaplin AE (1981) Acetylene reduction (nitrogen fixation) by cyanobacteria grown under alternating light-dark cycles. FEMS Microbiol Lett 10: 245–247.

    Google Scholar 

  • Mullineaux PM, Chaplin AE and Gallon JR (1983) Synthesis of nitrogenase in the cyanobacterium Gloeothece (Gloeocapsa) sp. CCAP 1430/3. J Gen Microbiol 129: 1689–1696.

    CAS  Google Scholar 

  • Nagatani HH and Haselkorn R (1978) Molybdenum independence of nitrogenase component synthesis in the non-heterocystous cyanobacterium Plectonema. J Bacteriol 134: 597–605.

    PubMed  CAS  Google Scholar 

  • Neilson AH and Doudoroff M (1973) Ammonia assimilation in blue-green algae. Arch Mikrobiol 89: 15–22.

    PubMed  CAS  Google Scholar 

  • Neilson AH and Larsson T (1980) The utilization of organic nitrogen for growth of algae: Physiological aspects. Physiol Plant 48: 542–553.

    CAS  Google Scholar 

  • Ohki K and Fujita Y (1988) Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions. Mar Biol 98: 111–114.

    CAS  Google Scholar 

  • Ohmori M and Hattori A (1978) Transient change in the ATP pool of Anabaena cylindrica associated with ammonia assimilation. Arch Microbiol 117: 17–20.

    PubMed  CAS  Google Scholar 

  • Ohmori M, Ohmori K and Strotmann H (1977) Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindrica. Arch Microbiol 114: 225–229.

    CAS  Google Scholar 

  • Omata T (1991) Cloning and characterization of the nrtA gene that encodes a 45 kDa protein involved in nitrate transport in the cyanobacterium Synechococcus PCC 7942. Plant Cell Physiol 32: 151–157.

    CAS  Google Scholar 

  • Omata T, Ohmori M, Arai N and Ogawa T (1989) Genetically engineered mutant of the cyanobacterium Synechococcus PCC 7942 defective in nitrate transport. Proc Natl Acad Sci USA 86: 6612–6616.

    PubMed  CAS  Google Scholar 

  • Omata T, Andriesse X and Hirano A (1993) Identification and characterization of a gene cluster involved in nitrate transport of the cyanobacterium Synechococcus sp. PCC7942. Mol Gen Genet 236: 193–202.

    CAS  Google Scholar 

  • Orr J and Haselkorn R (1981) Kinetic and inhibition studies of glutamine synthetase from the cyanobacterium Anabaena 1120. J Biol Chem 256: 13099–13104.

    PubMed  CAS  Google Scholar 

  • Orr J, Keefer LM, Keim P, Nguyen TD, Wellems T, Heinrikson L and Haselkorn R (1981) Purification, physical characterization, and NH2-terminal sequence of glutamine synthetase from the cyanobacterium Anabaena 7120. J Biol Chem 256: 13091–13098.

    PubMed  CAS  Google Scholar 

  • Ortega T, Castillo F and Cárdenas J (1976) Photolysis of water coupled to nitrate reduction by Nostoc muscorum subcellular particles. Biochem Biophys Res Commun 71: 885–891.

    PubMed  CAS  Google Scholar 

  • Ortega-Calvo JJ and Stal LJ (1991) Diazotrophic growth of the unicellular cyanobacterium Gloeothece sp. PCC 6909 in continuous culture. J Gen Microbiol 137: 1789–1797.

    CAS  Google Scholar 

  • Ostrowski J, Wu JY, Rueger DC, Miller BE, Siegel LM and Kredich NM (1989) Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. J Biol Chem 264: 15726–15737.

    PubMed  CAS  Google Scholar 

  • Peschek GA (1979) Nitrate and nitrite reductase and hydrogenase in Anacystis nidulans grown in Fe-and Mo-deficient media. FEMS Microbiol Lett 6: 371–374.

    CAS  Google Scholar 

  • Peterson RB and Wolk CP (1978) High recovery of nitrogenase activity and of 55Fe-labeled nitrogenase in heterocysts isolated from Anabaena variabilis. Proc Natl Acad Sci USA 75: 6271–6275.

    PubMed  CAS  Google Scholar 

  • Polukhina LE, Sakhurieva GN and Shestakov SV (1982) Ethylenediamine-resistant Anabaena variabilis mutants with derepressed nitrogen-fixing system. Mikrobiol 51: 90–95.

    CAS  Google Scholar 

  • Porter RD, Buzby JS, Pilon A, Fields PI, Dubbs JM and Stevens SE (1986) Genes from the cyanobacterium Agmenellum quadruplicatum isolated by complementation: Characterization and production of merodiploids. Gene 41: 249–260.

    PubMed  CAS  Google Scholar 

  • Potts M, Angeloni SV, Ebel RE and Bassam D (1992) Myoglobin in a cyanobacterium. Science 256: 1690–1692.

    PubMed  CAS  Google Scholar 

  • Rai AN, Rowell P and Stewart WDP (1984) Evidence for an ammonium transport system in free-living and symbiotic cyanobacteria. Arch Microbiol 137: 241–246.

    CAS  Google Scholar 

  • Rai AN, Borthakur M and Bergman B (1992) Nitrogenase derepression, its regulation and metabolic changes associated with diazotrophy in the non-heterocystous cyanobacterium Plectonema boryanum PCC 73110. J Gen Microbiol 138: 481–491.

    CAS  Google Scholar 

  • Ramasubramanian TS, Wei T-F and Golden JW (1994) Two Anabaena sp. strain PCC 7120 DNA-binding factors interact with vegetative cell-and heterocyst-specific genes. J Bacteriol 176: 1214–1223.

    PubMed  CAS  Google Scholar 

  • Ramos JL and Guerrero MG (1983) Involvement of ammonium metabolism in the nitrate inhibition of nitrogen fixation in Anabaena sp. strain ATCC 33047. Arch Microbiol 136: 81–83.

    CAS  Google Scholar 

  • Ramos JL, Madueño F and Guerrero MG (1985) Regulation of nitrogenase levels in Anabaena sp. ATCC 33047 and other filamentous cyanobacteria. Arch Microbiol 141: 105–111.

    CAS  Google Scholar 

  • Rawson DM (1985) The effects of exogenous amino acids on growth and nitrogenase activity in the cyanobacterium Anabaena cylindrica PCC 7122. J Gen Microbiol 131: 2549–2554.

    CAS  Google Scholar 

  • Resch C and Gibson J (1983) Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J Bacteriol 155: 345–350.

    PubMed  CAS  Google Scholar 

  • Reyes JC and Florencio FJ (1994) A new type of glutamine synthetase in cyanobacteria: The protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. J Bacteriol 176: 1260–1267.

    PubMed  CAS  Google Scholar 

  • Riccardi G, De Rossi E, Delia Valle G and Ciferri O (1985) Cloning of the glutamine synthetase gene from Spirulina platensis. Plant Mol Biol 4: 133–136.

    CAS  Google Scholar 

  • Rice D, Mazur BJ and Haselkorn R (1982) Isolation and physical mapping of nitrogen fixation genes from the cyanobacterium Anabaena 7120. J Biol Chem 257: 13157–13163.

    PubMed  CAS  Google Scholar 

  • Rippka R and Waterbury JB (1977) The synthesis of nitrogenase by non-heterocystous cyanobacteria. FEMS Microbiol Lett 2: 83–86.

    CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61.

    Google Scholar 

  • Rodríguez R, Lara C and Guerrero MG (1992) Nitrate transport in the cyanobacterium Anacystis nidulans R2. Kinetic and energetic aspects. Biochem J 282: 639–643.

    PubMed  Google Scholar 

  • Romero JM, Flores E and Guerrero MG (1985) Inhibition of nitrate utilization by amino acids in intact Anacystis nidulans cells. Arch Microbiol 142: 1–5.

    PubMed  CAS  Google Scholar 

  • Rowell P and Stewart WDP (1976) Alanine dehydrogenase of the N2-fixing blue-green alga, Anabaena cylindrica. Arch Microbiol 107: 115–124.

    CAS  Google Scholar 

  • Rowell P, Enticott S and Stewart WDP (1977) Glutamine synthetase and nitrogenase activity in the blue-green alga Anabaena cylindrica. New Phytol 79: 41–54.

    CAS  Google Scholar 

  • Rowell P, Sampaio MJAM, Ladha JK and Stewart WDP (1979) Alteration of cyanobacterial glutamine synthetase activity in vivo in response to light and NH4 +. Arch Microbiol 120: 195–200.

    CAS  Google Scholar 

  • Sampaio MJAM, Rowell P and Stewart WDP (1979) Purification and some properties of glutamine synthetase from the nitrogen-fixing cyanobacteria Anabaena cylindrica and a Nostoe sp. J Gen Microbiol 111: 181–191.

    CAS  Google Scholar 

  • Saville B, Straus N and Coleman JR (1987) Contiguous organization of nitrogenase genes in a heterocystous cyanobacterium. Plant Physiol 85: 26–29.

    PubMed  CAS  Google Scholar 

  • Schmitz O, Kentemich T, Zimmer W, Hindeshagen B and Bothe H (1993) Identification of the nifJ gene coding for pyruvate:ferredoxin oxidoreductase in dinitrogen-fixing cyanobacteria. Arch Microbiol 160: 62–67.

    PubMed  CAS  Google Scholar 

  • Schrautemeier B and Böhme H (1985) A distinct ferredoxin for nitrogen fixation isolated from heterocysts of the cyanobacterium Anabaena variabilis. FEBS Lett 184: 304–308.

    CAS  Google Scholar 

  • Schrautemeier B and Böhme H (1992) Coding sequence of a heterocyst ferredoxin gene (fdxH) isolated from the nitrogen-fixing cyanobacterium Calothrix sp. PCC 7601. Plant Mol Biol 18: 1005–1006.

    PubMed  CAS  Google Scholar 

  • Schrautemeier B, Cassing A and Böhme H (1994) Characterization of the genome region encoding an FdxH-type ferredoxin and a new 2[4Fe-4S] ferredoxin from the nonheterocystous, nitrogen-fixing cyanobacterium Plectonema boryanum PCC 73110. J Bacteriol 176: 1037–1046.

    PubMed  CAS  Google Scholar 

  • Serrano A, Rivas J and Losada M (1981) Nitrate and nitrite as ‘in vivo’ quenchers of chlorophyll fluorescence in blue-green algae. Photosynthesis Res 2: 175–184.

    CAS  Google Scholar 

  • Shah VK, Hoover TR, Imperial J, Paustian TD, Roberts GP and Ludden PW (1988) Role of nif gene products and homocitrate in the biosynthesis of iron-molybdenum cofactor. In: Bothe H, de Bruijn FJ and Newton WE (eds) Nitrogen Fixation: Hundred Years After, pp 115–120. Gustav Fisher, Stuttgart.

    Google Scholar 

  • Simon RD (1987) Inclusion bodies in the cyanobacteria: Cyanophycin, polyphosphate, polyhedral bodies. In: Fay P and Van Baalen C (eds) The Cyanobacteria, pp 199–225. Elsevier, Amsterdam.

    Google Scholar 

  • Singh RK and Stevens SE Jr (1992) Cloning of the nifHDK genes and their organisation in the heterocystous cyanobacterium Mastigocladus laminosus. FEMS Microbiol Lett 94: 227–234.

    CAS  Google Scholar 

  • Singh RK, Stevens SE Jr and Bryant DA (1987) Molecular cloning and physical mapping of the nitrogenase structural genes from the filamentous, non-heterocystous cyanobacterium Pseudanabaena PCC 7409. FEMS Microbiol Lett 48: 53–58.

    CAS  Google Scholar 

  • Singh S (1990) Regulation of urease activity in the cyanobacterium Anabaena doliolum. FEMS Microbiol Lett 67: 79–84.

    CAS  Google Scholar 

  • Singh S and Ahmad S (1989) Regulation of urea uptake by ammonia in the cyanobacterium Anabaena doliolum. FEMS Microbiol Lett 61: 199–202.

    CAS  Google Scholar 

  • Sivak MN, Lara C, Romero JM, Rodriguez R and Guerrero MG (1989) Relationship between a 47 kDa cytoplasmic membrane polypeptide and nitrate transport in Anacystis nidulans. Biochem Biophys Res Commun 158: 257–262.

    PubMed  CAS  Google Scholar 

  • Smith AJ, London J and Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 94: 972–983.

    PubMed  CAS  Google Scholar 

  • Smith RV, Noy RJ and Evans MCW (1971) Physiological electron donor systems to the nitrogenase of the blue-green alga Anabaena cylindrica. Biochim Biophys Acta 253: 104–109.

    PubMed  CAS  Google Scholar 

  • Spiller H and Shanmugam KT (1987) Physiological conditions for nitrogen fixation in a unicellular cyanobacterium, Synechococcus sp. strain SF1. J Bacteriol 169: 5379–5384.

    PubMed  CAS  Google Scholar 

  • Spiller H, Latorre C, Hassan ME and Shanmugam KT (1986) Isolation and characterization of nitrogenase-derepressed mutant strains of cyanobacterium Anabaena variabilis. J Bacteriol 165: 412–419.

    PubMed  CAS  Google Scholar 

  • Stacey G, Tabita FR and Van Baalen C (1977) Nitrogen and ammonia assimilation in the cyanobacteria: Purification of glutamine synthetase from Anabaena sp. strain CA. J Bacteriol 132: 596–603.

    PubMed  CAS  Google Scholar 

  • Stacey G, Van Baalen C and Tabita FR (1979) Nitrogen and ammonia assimilation in the cyanobacteria: Regulation of glutamine synthetase. Arch Biochem Biophys 194: 457–467.

    PubMed  CAS  Google Scholar 

  • Stal LJ and Krumbein WE (1985) Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles. Arch Microbiol 143: 67–71.

    CAS  Google Scholar 

  • Stevens SE and Van Baalen C (1970) Growth characteristics of selected mutants of a coccoid blue-green alga. Arch Microbiol 72: 1–8.

    CAS  Google Scholar 

  • Stevens SE and Van Baalen C (1974) Control of nitrate reductase in a blue-green alga. The effects of inhibitors, blue light, and ammonia. Arch Biochem Biophys 161: 146–152.

    CAS  Google Scholar 

  • Stewart WDP and Lex M (1970) Nitrogenase activity in the blue-green alga Plectonema boryanum strain 594. Arch Microbiol 73: 250–260.

    CAS  Google Scholar 

  • Stewart WDP and Rowell P (1975) Effects of L-methionine-DL-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica. Biochem Biophys Res Commun 65: 846–856.

    PubMed  CAS  Google Scholar 

  • Stricker O, Almon H, Monnerjahn U and Böhme H (1992) Identification and characterization of nifV in Anabaena sp. PCC 7120. Second European Workshop on the Molecular Biology of Cyanobacteria, Bristol, Abstracts p 57.

    Google Scholar 

  • Suzuki I, Sugiyama T and Omata T (1993) Primary structure and transcriptional regulation of the gene for nitrite reductase from the cyanobacterium Synechococcus PCC 7942. Plant Cell Physiol 34: 1311–1320.

    CAS  Google Scholar 

  • Thiel T (1993) Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 175: 6276–6286.

    PubMed  CAS  Google Scholar 

  • Thiel T and Leone M (1986) Effect of glutamine on growth and heterocyst differentiation in the cyanobacterium Anabaena variabilis. J Bacteriol 168: 769–774.

    PubMed  CAS  Google Scholar 

  • Thiel T, Erker J and Lyons E (1993) Characterization of alternative nitrogen fixation systems in Anabaena variabilis. Fourth Cyanobacterial Workshop in Molecular Genetics, 1993, Asilomar (Pacific Grove, CA), Abstracts p 92.

    Google Scholar 

  • Thomas J, Meeks JC, Wolk CP, Shaffer PW, Austin SM and Chien WS (1977) Formation of glutamine from [13N]ammonia, [13N]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica. J Bacteriol 129: 1545–1555.

    PubMed  CAS  Google Scholar 

  • Tischner R and Schmidt A (1984) Light mediated regulation of nitrate assimilation in Synechococcus leopoliensis. Arch Microbiol 137: 151–154.

    CAS  Google Scholar 

  • Tsai LB and Mortenson LE (1978) Interaction of the nitrogenase components of Anabaena cylindrica with those of Clostridium pasteurianum. Biochem Biophys Res Commun 81: 280–287.

    PubMed  CAS  Google Scholar 

  • Tsinoremas NF, Castets AM, Harrison MA, Allen JF and Tandeau de Marsac N (1991) Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of post-translational modification of the glnB gene product. Proc Natl Acad Sci USA 88: 4565–4569.

    PubMed  CAS  Google Scholar 

  • Turner NE, Robinson SJ and Haselkorn R (1983) Different promoters for the Anabaena glutamine synthetase gene during growth using molecular or fixed nitrogen. Nature 306: 337–342.

    Google Scholar 

  • Vega-Palas MA, Madueño F, Herrero A and Flores E (1990) Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 172: 643–647.

    PubMed  CAS  Google Scholar 

  • Vega-Palas MA, Flores E and Herrero A (1992) NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol 6: 1853–1859.

    PubMed  CAS  Google Scholar 

  • Wagner SJ, Thomas SP, Kaufman RI, Nixon BT and Stevens SE (1993) The glnA gene of the cyanobacterium Agmenellum quadruplicatum PR-6 is nonessential for ammonium assimilation. J Bacteriol 175: 604–612.

    PubMed  CAS  Google Scholar 

  • Weathers PJ, Chee HL and Allen MM (1978) Arginine catabolism in Aphanocapsa 6308. Arch Microbiol 118: 1–6.

    PubMed  CAS  Google Scholar 

  • Wei T-F, Ramasubramanian TS, Pu F and Golden JW (1993) Anabaena sp. strain PCC 7120 bifA gene encoding a sequence-specific DNA binding protein cloned by in vivo transcriptional interference selection. J Bacteriol 175: 4025–4035.

    PubMed  CAS  Google Scholar 

  • Weisshaar H and Böger P (1983) Nitrogenase activity of the non-heterocystous cyanobacterium Phormidiumfoveolarum. Arch Microbiol 136: 270–274.

    CAS  Google Scholar 

  • Wolk CP (1973) Physiology and cytological chemistry of blue-green algae. Bacteriol Rev 37: 32–101.

    PubMed  CAS  Google Scholar 

  • Wolk CP, Thomas J, Shaffer PW, Austin SM and Galonsky A (1976) Pathway of nitrogen metabolism after fixation of 13N-labeled nitrogen gas by the cyanobacterium, Anabaena cylindrica. J Biol Chem 251: 5027–5034.

    PubMed  CAS  Google Scholar 

  • Wyatt JT and Silvey JKG (1969) Nitrogen fixation by Gloeocapsa. Science 165: 908–909.

    PubMed  CAS  Google Scholar 

  • Yabuki Y, Mori E and Tamura G (1985) Nitrite reductase in the cyanobacterium Spirulina platensis. Agric Biol Chem 49: 3061–3062.

    CAS  Google Scholar 

  • Yamashita MM, Almassy RJ, Janson CA, Casio D and Eisenberg D (1989) Refined atomic model of glutamine synthetase at 3.5 Å resolution. J Biol Chem 264: 17681–17690.

    PubMed  CAS  Google Scholar 

  • Zehr JP, Ohki K and Fujita Y (1991) Arrangement of nitrogenase structural genes in an aerobic filamentous nonheterocystous cyanobacterium. J Bacteriol 173: 7055–7058.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Flores, E., Herrero, A. (1994). Assimilatory Nitrogen Metabolism and Its Regulation. In: Bryant, D.A. (eds) The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0227-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0227-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3273-2

  • Online ISBN: 978-94-011-0227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics