Skip to main content

Probing The Collective and Independent-Particle Character of Atomic Electrons

  • Chapter
Structure and Dynamics of Atoms and Molecules: Conceptual Trends
  • 69 Accesses

Abstract

Niels Bohr and Arnold Sommerfeld developed their model of the hydrogen atom and other one-electron atoms based on the concepts of discrete, stationary states and quantized energies and angular momenta of these atoms. Every stationary state carried its own constants of motion, to each of which corresponded a quantum number. Transitions between stationary states corresponded to sudden changes in the values of constants of the motion and of the corresponding quantum numbers, and to the absorption or emission of radiation to maintain conservation of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohr, N. (1976) Niels Bohr: Collected Works, J.R. Nielsen, ed., North-Holland, Amsterdam.

    Google Scholar 

  2. Kramers, H. A. (1923) “Über das Modell des Heliumatoms”, Z. Phvsik 13,

    Google Scholar 

  3. Landé, A. (1919) Phys. Z. 20, 233.

    Google Scholar 

  4. Landé, A. (1920) Phys. Z. 21, 114.

    Google Scholar 

  5. Kemble, E. C. (1921) Phil. Mag. 42, 123.

    Article  CAS  Google Scholar 

  6. Langmuir, I. (1921) “The Structure of the Helium Atom”, Phvs. Rev. 17, 339.

    Article  CAS  Google Scholar 

  7. Langmuir, I. (1921) “Forces within a static atom”, Phys. Rev. 18, 104.

    CAS  Google Scholar 

  8. Langmuir, I. (1921) Science 52, 434.

    Google Scholar 

  9. van Vleck, J. H. (1922) “The normal Helium Atom and the relation to the Quantum Theory”, Phil. Mag. 44, 311.

    Google Scholar 

  10. van Vleck, J. H. (1922) “The Dilemma of the Helium Atom”, Phil. Mag. 44, 842–869.

    Article  Google Scholar 

  11. Hylleraas, E. A. (1928) Z. Phys. 48, 469.

    Article  CAS  Google Scholar 

  12. Hylleraas, E. A. (1929) Z. Phys. 38, 739.

    Google Scholar 

  13. Hylleraas, E. A. (1929) Z. Physik 54, 347.

    Article  CAS  Google Scholar 

  14. Dickens, P. G. and Linnett, J. W. (1957) Quart. Revs. 11, 291.

    Article  CAS  Google Scholar 

  15. Coulson, C. A. and Neilson, A. H. (1961) Proc. Phvs. Soc. 78. 831.

    Article  CAS  Google Scholar 

  16. Madden, R. P. and Codling, K. (1963) Phvs. Rev. Lett. 10, 516.

    Article  CAS  Google Scholar 

  17. Cooper, J. W., Fano, U. and Prats, F. (1963) “Classification of Two-Electron Excitation Levels of Helium”, Phys. Rev. Lett. 10, 518–521.

    Article  Google Scholar 

  18. Fano, U. (1961) “Effect of Configuration Interaction on Intensities and Phase Shifts”, Phys. Rev. 124, 1866–1878.

    Article  CAS  Google Scholar 

  19. Lipsky, L., Anania, R. and Conneely, M. J. (1977) At. Data Nucl. Data Tables 20. 127.

    Article  CAS  Google Scholar 

  20. Callaway, J. (1978) Phys. Lett. A 66, 201.

    Article  Google Scholar 

  21. Bhatia, A. K. and Temkin, A. (1964) Rev. Mod. Phys. 36, 1050.

    Article  CAS  Google Scholar 

  22. Bhatia, A. K., Temkin, A. and Perkins, J. F. (1967) “Hylleraas Variational Calculations of Autoionizing States”, Phys. Rev. 153, 177.

    Article  CAS  Google Scholar 

  23. Bhatia, A. K. (1972) Phvs. Rev. A 6, 120.

    Article  Google Scholar 

  24. Bhatia, A. K., Burke, P. G. and Temkin, A. (1973) Phvs. Rev. A 8, 21.

    Article  CAS  Google Scholar 

  25. Bhatia, A. K. and Temkin, A. (1975) Phvs. Rev. A 11, 2018.

    Article  CAS  Google Scholar 

  26. Bhatia, A. K. (1977) Phys. Rev. A 15, 1315.

    Article  CAS  Google Scholar 

  27. Ho, Y. K. (1979) “Autoionization states of helium isoelectronic sequence below the n=3 hydrogenic threshold”, J. Phvs. B 12, 387–399.

    CAS  Google Scholar 

  28. Ho, Y. K. (1980) Phvs. Lett. 79A. 44.

    Article  CAS  Google Scholar 

  29. Ho, Y. K. (1981) Phvs. Rev. A 23, 2137.

    Article  CAS  Google Scholar 

  30. Macek, J. H. (1967) “Application of the Fock Expansion to Doubly Excited States of the Helium Atom”, Phys. Rev. 160, 170.

    Article  CAS  Google Scholar 

  31. Macek, J. (1968) “Properties of autoionizing states of He”, J. Phys. B 1, 831–843.

    Article  Google Scholar 

  32. Lin, C. D. (1974) “Correlation of excited electrons. The study of channels in hyperspherical coordinates”, Phys. Rev. A 10, 1986–2001.

    Article  CAS  Google Scholar 

  33. Fano, U. (1976) Physics Today 29. 32.

    Article  CAS  Google Scholar 

  34. Lin, C. D. (1976) “Properties of resonance states in H-”, Phvs. Rev. A 14, 30–35.

    Article  CAS  Google Scholar 

  35. Wulfman, C. E. (1968) Phys. Lett. 26A, 397.

    Google Scholar 

  36. Sinanoglu, O. and Herrick, D. R. (1975) “Group theoretic prediction of configuration mixing effects due to Coulomb repulsion in atoms with applications to doubly-excited spectra”, J. Chgm. Phys. 62, 886–892.

    CAS  Google Scholar 

  37. Lawton, R. T. and Child, M. S. (1979) “Local mode vibrations of water”, Mol. Phys.37, 1799–1807.

    Article  CAS  Google Scholar 

  38. Lawton, R. T. and Child, M. s. (1980) “Excited stretching vibrations of water: the quantum mechanical picture”, Mol. Phys. 40, 773–792.

    Article  CAS  Google Scholar 

  39. Lawton, R. T. and Child, M. S. (1981) “Local and normal stretching vibrational states of H2O. Classical and semiclassical considerations”, Mol. Phys. 44, 709–723.

    Article  CAS  Google Scholar 

  40. Child, M. S. and Lawton, R. T. (1981) Farad. Disc. 71. 1.

    Article  Google Scholar 

  41. Herrick, D. R. and Sinanoglu, O. (1975) “Comparison of doubly-excited helium energy levels, isoelectronic series, autoionization lifetimes and group-theoretical configuration-mixing predictions with large -configuration-interaction calculations and experimental spectra”, Phys. Rev. A 11, 97–110.

    Article  CAS  Google Scholar 

  42. Herrick, D. R., Kellman, M. E. and Poliak, R. D. (1980) “Supermultiplet classification of higher intershell doubly excited states of H-and He”, Phvs. Rev. A 22, 1517–1535.

    Article  CAS  Google Scholar 

  43. Herrick, D. R. and Kellman, M. E. (1980) “Novel supermultiplet levels for doubly excited He”, Phvs. Rev. A 21, 418–425.

    Article  CAS  Google Scholar 

  44. Kellman, M. E. and Herrick, D. R. (1978) “Rotor-like spectra for some doubly excited two-electron states”, J. Phys. B 11, L755.

    Article  CAS  Google Scholar 

  45. Kellman, M. E. and Herrick, D. R. (1980) “Ro-vibrational collective interpretation of supermultiplet classifications of intrashell levels of two-electron atoms”, Phvs. Rev. A 22, 1536.

    Article  CAS  Google Scholar 

  46. Herrick, D. R. (1982) Adv. Chem. Phvs. 52, 1.

    Article  Google Scholar 

  47. Munschy, G. and Pluvinage, P. (1963) Rev. Mod. Phys. 35, 494.

    Article  CAS  Google Scholar 

  48. Rehmus, P., Kellman, M. E. and Berry, R. S. (1978) “Spatial correlation of atomic electrons: He**”, Chem. Phys. 31. 239–262.

    Article  CAS  Google Scholar 

  49. Rehmus, P., Roothaan, C. C. J. and Berry, R. S. (1978) “Visualization of electron correlation in ground states of He and H-”, Chem. Phys. Lett. 58, 321–325.

    Article  CAS  Google Scholar 

  50. Rehmus, P. and Berry, R. S. (1979) “Visualization of electron correlation in a series of helium S states”. Chem. Phys. 38. 257–275.

    Article  CAS  Google Scholar 

  51. Yuh, H.-J., Ezra, G. S., Rehmus, P. and Berry, R. S. (1981) “Electron correlation and Kellman-Herrick quantization in doubly excited helium”, Phys. Rev. Lett. 47, 497–500.

    Article  CAS  Google Scholar 

  52. Ezra, G. S. and Berry, R. S. (1983) “Collective and independent-particle motion in doubly excited two-electron atoms”. Phvs. Rev. A 28. 1974–1988.

    Article  CAS  Google Scholar 

  53. Krause, J. L. and Berry, R. S. (1985) “Electron correlation in the ground and low-lying states of alkaline earth atoms”, J. Chem. Phys. 83, 5153–5162.

    Article  CAS  Google Scholar 

  54. Krause, J. L. and Berry, R. S. (1986) “Electron Correlation in Alkali Negative Ions”, Comments At. Mol. Phys. 18, 91–106.

    CAS  Google Scholar 

  55. Hunter, J. E., III and Berry, R. S. (1987) “Projection of accurate configuration-interaction wave functions for He** and the alkaline-earth-metal atoms onto simple rotorvibrator wave functions”, Phys. Rev. A 36, 3042–3053.

    Article  CAS  Google Scholar 

  56. Hunter, J. E., III and Berry, R. S. (1987) “Oscillator Strengths for the Alkaline-Earth Atoms Using Rotor-Vibrator and Configuration-Interaction Wave Functions”, Phys. Rev. Lett 59, 2959–2962.

    Article  CAS  Google Scholar 

  57. Batka, J. J., Jr. and Berry, R. S. (1993) “Validity Criteria for Rotor-Vibrator and Independent-Particle Models of Atoms: Overlaps, Oscillator Strengths and Angular Deviations”. J. Phys. Chem. 97. 2435–2442.

    Article  CAS  Google Scholar 

  58. Ceraulo, S. C. and Berry, R. S. (1991) “Quadrupole moments as measures of electron correlation in two-electron atoms”, Phys. Rev. A 44, 4145–4153.

    Article  CAS  Google Scholar 

  59. Krause, J. L., Morgan, J. D., III and Berry, R. S. (1987) “Expectation values of p1P2 as a measure of electron correlation in two-electron atoms”, Phys. Rev. A 35,3189–3196.

    Article  CAS  Google Scholar 

  60. Wen, J., Travis, J. C., Lucatorto, T. B., Johnson, B. C. and Clark, C. W. (1988) Phys. Rev. A 37, 4207.

    Article  CAS  Google Scholar 

  61. Schwarzkopf, O., Krässig, B., Elmiger, J. and Schmidt, V. (1993) “Energy-and Angle-Resolved Double Photoionization in Helium”, Phys. Rev. Lett. 70, 3008–3011.

    Article  CAS  Google Scholar 

  62. Schwarzkopf, O., Krässig, B. and Schmidt, V. (1993) “Energy-and angle-resolved (γ,2e) experiments with synchrotron radiation: helium and argon”, J. Physique IV Colloq. C6, supplément au Volume 3, 169–174.

    CAS  Google Scholar 

  63. Maulbetsch, F. and Briggs, J. S. (1993) “The angular distribution of equal-energy electrons following double photoionization”. J. Phys. B 26. L647–L652.

    Article  CAS  Google Scholar 

  64. Maulbetsch, F. and Briggs, J. S. (1993) “Angular distribution of electrons following double photoionization”. J. Phys. B 26, 1679–1694.

    Article  CAS  Google Scholar 

  65. Ceraulo, S. C., Stehman, R. M. and Berry, R. S. (1994) “Six-fold differential cross sections for atomic helium, magnesium and calcium in (γ,2e) experiments”, Phys. Rev. A 49, 1730–1744.

    Article  CAS  Google Scholar 

  66. Tweed, R. J. (1973) “Double ionization by electron impact. II. Calculations of cross sections for H-, He and Li+”. J. Phys. B 6, 270–285.

    Article  CAS  Google Scholar 

  67. Smirnov, Y. F., Pavlitchenkov, A. V., Levin, V. G. and Neudatchin, V. G. (1978) “A study of the two-electron Fourier amplitudes of atomic and molecular wave functions using the (γ,2e) and (e,3e) processes at high energies”, J. Phys. B 11, 3587–3602.

    Article  CAS  Google Scholar 

  68. Neudatchin, V. G., Smirnov, Y. F., Pavlitchenko, A. V. and Levin, V. G. (1977) Phys. Lett. 64A, 31.

    Google Scholar 

  69. Lahmam-Bennani, A., Dupré, C. and Duguet, A. (1989) Phys. Rev. Lett. 63. 1582.

    Article  CAS  Google Scholar 

  70. Lahmam-Bennani, A. (1991) “Recent developments and new trends in (e,2e) and (e,3e) studies”, J. Phys. B 24, 2401–2442.

    Article  Google Scholar 

  71. Lahmam-Bennani, A., Ehrhardt, H., Dupré, C. and Duguet, A. (1991) “Identification of mechanisms of electron impact double ionizing collisions by e,(3–1)e experiments”, J. Phys. B 24, 3645–3653.

    Article  CAS  Google Scholar 

  72. Lahmam-Bennani, A., Duguet, A., Grisogono, A. M. and Lecas, M. (1992) “(e,3e) absolute five-fold differential cross sections for double ionization of krypton”, J. Phys. B 25, 2873–2884.

    Article  CAS  Google Scholar 

  73. Dal Cappello, C. and Le Rouzo, H. (1991) “Angular distributions in the double ionization of helium by electron impact”, Phys. Rev. A 43, 1395–1404.

    Google Scholar 

  74. Joulakian, B., Dal Cappello, C. and Brauner, M. (1992) “Double ionization of helium by fast electrons: use of correlated two electron wavefunctions”, J. Phys. B 25, 2863–2871.

    Article  CAS  Google Scholar 

  75. Joulakian, B. and Dal Cappello, C. (1993) “Theoretical study of the optimal conditions for the measurement of the differential cross section of the double ionization of helium by fast electrons”, Phys. Rev. A 47, 3788–3795.

    Article  CAS  Google Scholar 

  76. Berakdar, J. and Klar, H. (1993) “Structures in the cross section of double ionization of helium by the impact of fast electrons”, J. Phys. B 26, 4219–4235.

    Article  CAS  Google Scholar 

  77. Berakdar, J. and Briggs, J. S. (1994) “The three-body Coulomb continuum problem”, (in press)

    Google Scholar 

  78. Ceraulo, S. C., Stehman, R. M. and Berry, R. S. (1994) “Eight-fold differential cross sections for double ionization of helium, magnesium and calcium by electron impact”, (submitted)

    Google Scholar 

  79. Wulfman, C. D. (1973) “Approximate dynamical symmetry of two-electron atoms”, Chem. Phys. Lett. 23. 370–372.

    Article  CAS  Google Scholar 

  80. Wulfman, C. D. and Kumei, S. (1973) “A simple O(4,2) approximation for hydrogenic Coulomb integrals”. Chem. Phys. Lett. 23. 367–369.

    Article  CAS  Google Scholar 

  81. Novaro, O. and Freyre, A. (1972) “O(4) and U(3) symmetry breaking in the second row of the periodic table”, Mol. Phys. 20, 861–871.

    Article  Google Scholar 

  82. Fock, V. (1935) “Zur Theorie des Wasserstoffatoms”, Z.Phys. 98, 145–15.

    Article  Google Scholar 

  83. Bargmann, V. (1934) “Zur Theorie des Wasserstoffatoms”, Z. Phys. 99, 576–582.

    Google Scholar 

  84. Englefield, M. J. (1972) Group Theory and the Coulomb Problem, Wiley-Interscience, New York.

    Google Scholar 

  85. Nikitin, S. I. and Ostrovsky, V. N. (1976) “On the classification of the doubly excited states of the two-electron atom”, J. Phys. B 9, 3141–3147.

    Article  CAS  Google Scholar 

  86. Nikitin, S. I. and Ostrovsky, V. N. (1978) “The symmetry of the electron-electron interaction operator in the dipole approximation”, J. Phys. B 11, 1681–1693.

    Article  CAS  Google Scholar 

  87. deShalit, A. and Feshbach, H. (1974) Theoretical Nuclear Physics, Wiley, New York.

    Google Scholar 

  88. Watanabe, S.-I. and Lin, C. D. (1986) “Demonstration of moleculelike modes of doubly excited states in hyperspherical coordinates”, Phys. Rev. A 34, 823–837.

    Article  CAS  Google Scholar 

  89. Lin, C. D. (1984) “Classification of doubly excited states of two electron atoms”, Phys. Rev. Lett. 52, 1252.

    Article  Google Scholar 

  90. Ezra, G. S. and Berry, R. S. (1984) “Comment on “Classification of doubly excited states of two electron atoms” by C. D. Lin”, Phys. Rev. Lett. 52, 1252.

    Article  CAS  Google Scholar 

  91. Watanabe, S.-I. and Lin, C. D. (1987) “Classification of triply excited states from a molecular viewpoint”. Phys. Rev. A 36. 511–522.

    Article  CAS  Google Scholar 

  92. Bao, C.-g. (1992) “Possible modes of angular motion in 4Sº triply excited states”, J. Phys. B 25, 3725–3734.

    Article  Google Scholar 

  93. Bao, C.-g. (1993) “The gentle collective internal oscillation in the ground state of fourvalence-electron atoms”. J. Phys. B 26, 4671–4682.

    Article  CAS  Google Scholar 

  94. Ezra, G. S. and Berry, R. S. (1982) “Correlation of two electrons on a sphere”, Phys. Rev. A 25, 1513–1527.

    Article  CAS  Google Scholar 

  95. Ezra, G. S. and Berry, R. S. (1983) “Quantum states of two particles on concentric spheres”. Phys. Rev. A 28, 1989–2000.

    Article  CAS  Google Scholar 

  96. Ojha, P. C. and Berry, R. S. (1987) “Angular correlation of two electrons on a sphere”.Phys. Rev. A 36, 1575–1585.

    Article  CAS  Google Scholar 

  97. Kellman, M. E. (1994) “Origin of two-electron atomic supermultiplets in U(4) group embedding”. Phys. Rev. Lett. 73?, (in press).

    Google Scholar 

  98. Berry, R. S. (1986) “Collective and Planetary Motion in Atoms” in The Lesson of Quantum Theory, deBoer, J., Dal, E. and Ulfbeck, O., ed., Elsevier, Amsterday.

    Google Scholar 

  99. Berry, R. S. (1989) “How good is Niels Bohr’s atomic model?”, Contemp. Phys. 30, 1–19.

    Article  CAS  Google Scholar 

  100. Banyard, K. E. and Ellis, J. D. (1972) “A distribution function for angular correlation in He-and Be-like ions”, Molec. Phys. 24, 1291–1296.

    Article  CAS  Google Scholar 

  101. Banyard, K. E. and Ellis, J. D. (1975) “Excited states of He: the behavior of interelectronic angular distribution functions”. J. Phys. B 8, 2311–2319.

    Article  CAS  Google Scholar 

  102. Greene, C. H. (1981) “Doubly excited states of the alkaline earth atoms”, Phys. Rev. A 23, 661–678.

    Article  CAS  Google Scholar 

  103. O’Mahony, P. F. (1985) “Electron correlations in atomic valence shells: magnesium and aluminum”. Phys. Rev. A 32, 908–916.

    Article  Google Scholar 

  104. O’Mahony, P. F. and Greene, C. H. (1985) “Doubly excited states of beryllium and magnesium”. Phys. Rev. A 31, 250–259.

    Article  Google Scholar 

  105. Barthelat, J. C., Durand, P. and Serafini, A. (1977) Mol. Phys. 33, 159.

    Article  CAS  Google Scholar 

  106. Bachelet, G. B., Hamann, D. R. and Schlüter, M. (1982) Phys. Rev. B 26, 4199.

    Article  CAS  Google Scholar 

  107. Miller, T. A. and Freund, R. S. (1971) Phys. Rev. A 4, 81.

    Article  Google Scholar 

  108. Miller, T. A. and Freund, R. S. (1972) Phys. Rev. A 5, 5188.

    Google Scholar 

  109. Sandars, P. G. H. and Stewart, A. J. (1973) Phys. 3, 429.

    Google Scholar 

  110. Angel, J. R. P., Sandars, P. G. H. and Woodgate, G. K. (1967) “Direct Measurement of an Atomic Quadrupole Moment”, J. Chem. Phys. 47, 1552–1553.

    Article  CAS  Google Scholar 

  111. Glassgold, A. E. and Ialongo, G. (1968) “Angular Distributions of the Outgoing Electrons in Electronic Ionization”, Phys. Rev. 175, 151–159.

    Article  CAS  Google Scholar 

  112. Byron, F. W., jr. and Joachain, C. J. (1966) “Importance of correlation effect in the ionization of helium by electron impact”, Phys. Rev. Lett. 16, 1139–1142.

    Article  Google Scholar 

  113. Byron, F. W., jr. and Joachain, C. J. (1967) “Multiple Ionization Processes in Helium”. Phys. Rev. 164. 1.

    Article  CAS  Google Scholar 

  114. Mittlelman, M. H. (1966) “Single and double ionization of He by electrons”, Phys. Rev. Lett. 16, 498–499.

    Article  Google Scholar 

  115. McGuire, J. H. (1982) “Double Ionization of Helium by Protons and Electrons at High Velocities”, Phys. Rev. Lett. 49, 1153–1157.

    Article  CAS  Google Scholar 

  116. Levin, V. G., Neudatchin, V. G., Pavlitchenkov, A. V. and Smirnov, Y. U. (1984) “A study of the electron correlations in the H2 molecule using the double photoionization process (γ,2e)”, J. Phys. B 17. 1525.

    Article  CAS  Google Scholar 

  117. Huetz, A., Selles, P., Waymel, D. and Mazeau, J. (1991) J. Phys. B 24, 1917.

    Article  CAS  Google Scholar 

  118. Dal Cappello, C., Langlois, J., Dal Cappello, M. C., Joulakian, B., Lahmam-Bennani, A., Duguet, A. and Tweed, R. (1992) Z. Phys. D 23, 389.

    Article  Google Scholar 

  119. King, G. C., Zubek, M., Rutter, P. M., Read, F. H., MacDowell, A. A., West, J. B. and Holland, D. M. P. (1988) J. Phys. B 21, L403.

    Article  CAS  Google Scholar 

  120. Kossmann, H. and Schmidt, V. (1988) Phys. Rev. Lett. 60, 1266.

    Article  CAS  Google Scholar 

  121. Wannier, G. H. (1953) “The Threshold Law for Single Ionization of Atoms and Ions by Electrons”. Phys. Rev. 90, 817–825.

    Article  CAS  Google Scholar 

  122. Rau, A. R. P. (1971) Phys. Rev. A 4, 207.

    Article  Google Scholar 

  123. Peterkop, R. (1971) “WKB approximation and threshold law for electron-atom ionization”, J. Phys. B 4, 513–521.

    Article  CAS  Google Scholar 

  124. Read, F. H. (1985) in Electron Impact Ionization, Mark, T. D. and Dunn, G. H., ed., Springer, Berlin.

    Google Scholar 

  125. Duguet, A. and Lahmam-Bennani, A. (1992) Z. Phys. D23. 383.

    Google Scholar 

  126. Ford, M. J., Doering, J. P., Coplan, M. A., Cooper, J. W. and Moore, J. H. in ICPEAC Satellite Meeting, Paris.

    Google Scholar 

  127. Ford, M. J., Doering, J. P., Coplan, M. A., Cooper, J. W. and Moore, J. H. (1994) “(e,3e) Observation of the angular correlation between ejected and Auger electrons in the double ionization of magnesium”, Phys. Rev. A (submitted).

    Google Scholar 

  128. Leopold, J. G. and Percival, I. C. (1980) “The semiclassical two-electron atom and the old quantum theory”, J. Phys. B 13, 1037–1047.

    Article  CAS  Google Scholar 

  129. Leopold, J. G., Percival, I. C. and Richards, D. (1982) “Classical and semiclassical theory for the exchange symmetry of identical particles”, J. Phys. A 15, 805–824.

    Article  Google Scholar 

  130. Leopold, J. G., Percival, I. C. and Tworkowski, A. S. (1980) “Semiclassical perturbation theory for energy levels of planetary atoms”, J. Phys. B 13, 1025.

    Article  CAS  Google Scholar 

  131. Percival, I. C. (1977) “Planetary atoms”. Proc. Roy. Soc. Lond. A 353. 289–297.

    Article  CAS  Google Scholar 

  132. Richter, K. and Wintgen, D. (1990) Phys. Rev. Lett. 65, 1965.

    Article  Google Scholar 

  133. Richter, K. and Wintgen, D. (1991) J. Phys. B 24, L565–L571.

    Article  CAS  Google Scholar 

  134. Richter, K., Tanner, G. and Wintgen, D. (1993) “Classical mechanics of two-electron atoms”, Phys. Rev. A 48, 4182–4196.

    Article  CAS  Google Scholar 

  135. Langmuir, I. (1921) “The structure of the helium atom and the hydrogen molecule”, Phys. Rev. 17, 401(A).

    Article  Google Scholar 

  136. Richter, K. and Wintgen, D. (1990) J. Phys. B 23, L197.

    Article  CAS  Google Scholar 

  137. Müller, J., Burgdörfer, J. and Noid, D. (1992) “Torus quantization of symmetrically excited helium”. Phys. Rev. A 45, 1471–1478.

    Article  Google Scholar 

  138. Müller, J. and Burgdörfer, J. (1993) “Calculation of Langmuir States in Doubly Excited Helium”. Phys. Rev. Lett. 70. 2375–2378.

    Article  Google Scholar 

  139. Weidenmüller, H. A. (1993) “Semiclassical periodic-orbit theory for identical particles”. Phys. Rev. A 48, 1819–1823.

    Article  Google Scholar 

  140. Gutzwiller, M. C. (1990) Chaos in Classical and Quantum Mechanics, Springer, New York.

    Google Scholar 

  141. Ezra, G. S., Richter, K., Tanner, G. and Wintgen, D. (1991) “Semiclassical cycle expansion for the helium atom”, J. Phys. B 24, L413–L420.

    Article  CAS  Google Scholar 

  142. Batka, J. J., Jr. and Berry, R. S. (1994) (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berry, R.S. (1995). Probing The Collective and Independent-Particle Character of Atomic Electrons. In: Calais, J.L., Kryachko, E.S. (eds) Structure and Dynamics of Atoms and Molecules: Conceptual Trends. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0263-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0263-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4116-4

  • Online ISBN: 978-94-011-0263-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics