Skip to main content

Trends in Molecular Dynamics Simulation Technique

  • Chapter
Frontiers of Chemical Dynamics

Part of the book series: NATO ASI Series ((ASIC,volume 470))

Abstract

The molecular dynamics (MD) simulation method is one of the typical statistical mechanical computer simulation techniques employed in the theoretical study of many-particle systems. The behavior of a macroscopic system, consisting of a large number of interacting particles, is usually too complicated for an analytical statistical-mechanical treatment. Computer simulations have become a valuable tool for studying structural and dynamical equilibrium and nonequilibrium properties of chemical systems. The dynamics simulation technique aims at reflecting the interaction within real systems in a mathematical model. Based on this model the time evolution of the particles is then numerically calculated using classical or quantum-mechanical methods. Results are obtained by observing and evaluating this evolution; hence the simulation technique is in principle an experimental discipline. The outcome of these computer experiments is statistically analyzed, thus giving the relevant statistical-mechanical quantities for characterizing the system. The calculated observables can be directly related to real experiments (in the case where the model scenario closely corresponds to reality) and to the results from analytic theory or simulations with reduced complexity (in the case where the model scenario was generated in order to study the systematic response of the system to changes of individual control parameters). This interplay is schematically shown in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCammon, J. A. and Harvey, S. C. (1987) Dynamics of Proteins and Nucleic Acids ,Cambridge University Press, Cambridge.

    Book  Google Scholar 

  2. Van Gunsteren, W. F. and Berendsen, H. J. C. (1990) Angew. Chem. 102, 1020.

    Article  Google Scholar 

  3. Allen, M. P. and Tildesley, D. J. (1990) Computer Simulation of Liquids ,Clarendon Press, Oxford.

    Google Scholar 

  4. Heermann, D. W. (1986) Computer Simulation Methods in Theoretical Physics ,Springer-Verlag, Berlin.

    Book  Google Scholar 

  5. Ciccotti, G. and Hoover, W. G. (1986) Molecular Dynamical Simulation of Statistical-Mechanical Systems ,North-Holland, Amsterdam.

    Google Scholar 

  6. Hoover, W.G. (1986) Molecular Dynamics ,Springer-Verlag, Berlin.

    Google Scholar 

  7. McQuarrie, D. A. (1976) Statistical Mechanics ,Harper and Row, New York.

    Google Scholar 

  8. Chandler, D. (1987) Introduction to Modern Statistical Mechanics ,Oxford University Press, New York.

    Google Scholar 

  9. Lebowitz, J. L., Percus, J. K., and Verlet, L. (1967) Phys. Rev. 153, 250.

    Article  ADS  Google Scholar 

  10. Toxvaerd, S. (1991) Molec. Phys. 72, 159.

    Article  ADS  Google Scholar 

  11. Gray, S. K., Noid, D. W., and Sumpter, B. G. (1994) J. Chem. Phys. 101, 4062.

    Article  ADS  Google Scholar 

  12. Gear, C. W. (1971) Numerical initial value problems in ordinary differential equations ,Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  13. Verier, L. (1967) Phys. Rev. 159, 98.

    Article  ADS  Google Scholar 

  14. Berendsen, H. J. C. and Van Gunsteren, W. F. (1985) Proceedings of the Enrico Fermi Summer School, Molecular dynamics simulation of statistical mechanical systems ,Soc. Italiana di Fisica, Bologna.

    Google Scholar 

  15. Kast, S. M., Nicklas, K., Bär, H.-J., and Brickmann, J. (1994) J. Chem. Phys. 100, 566.

    Article  ADS  Google Scholar 

  16. Lustig, R. (1994) J. Chem. Phys. 100, 3048; and subsequent articles.

    Article  ADS  Google Scholar 

  17. Berry, R. S. (1994) J. Phys. Chem. 98, 6910.

    Article  Google Scholar 

  18. Woodcock, L. V. (19971) Chem. Phys. Lett. 10, 257.

    Article  ADS  Google Scholar 

  19. Evans, D. J., Hoover, W. G., Failor, B. H., Moran, B., and Ladd, A. J. C. (1983) Phys. Rev. A 28, 1016.

    Article  ADS  Google Scholar 

  20. Evans, D. J. and Morriss, G. P. (1984) Comput. Phys. Rep. 1, 297.

    Article  ADS  Google Scholar 

  21. Esparza, C. H. and Kronmüller, H. (1989) Molec. Phys. 68 ,1341.

    Article  ADS  Google Scholar 

  22. Berendsen, H. J. C, Postma, J. P. M., Van Gunsteren, W. F., DiNola, A., and Haak, J. R. (1984) J. Chem. Phys. 81, 3684.

    Article  ADS  Google Scholar 

  23. Nose, S. (1984) Molec. Phys. 52, 255.

    Article  ADS  Google Scholar 

  24. Hoover, W. G. (1985) Phys. Rev. A 31, 1695.

    Article  ADS  Google Scholar 

  25. Toxvaerd, S. and Olsen, O. H. (1990) Ber. Bunsenges. Phys. Chem. 94, 274.

    Article  Google Scholar 

  26. Martyna, G. J., Klein, M. L., and Tuckerman, M. (1992) J. Chem. Phys. 91, 2635.

    Article  ADS  Google Scholar 

  27. Nose, S. (1991) Prog. Theor. Phys. Suppl. 103, 1.

    Article  MathSciNet  ADS  Google Scholar 

  28. Andersen, H. C. (1980) J. Chem. Phys. 72, 2384.

    Article  ADS  Google Scholar 

  29. Tanaka, H., Nakanishi, K., and Watanabe, N. (1983) J. Chem. Phys. 78, 2626.

    Article  ADS  Google Scholar 

  30. Ciccotti, G. and Tenenbaum, A. (1980) J. Stat. Phys. 23, 767.

    Article  ADS  Google Scholar 

  31. Bonomi, E. (1985) J. Stat. Phys. 39, 167.

    Article  ADS  Google Scholar 

  32. Schneider, T. and Stoll, E. (1978) Phys. Rev. B 17, 1302.

    Article  ADS  Google Scholar 

  33. Van Gunsteren, W. F., Berendsen, H. J. C., and Rullmann, J. A. C. (1981) Molec. Phys. 44, 69.

    Article  ADS  Google Scholar 

  34. Kast, S. M. (1994) Dr.-Ing. thesis, Technische Hochschule Darmstadt; Kast, S. M. and Brickmann, J. (submitted for publication) J. Chem. Phys.

    Google Scholar 

  35. Strutt, J. W. (Baron Rayleigh) (1891) Phil. Mag. 32, 424; (1902) Scientific Papers ,Vol. 3, Cambridge University Press, London.

    Article  Google Scholar 

  36. Reiling, S. (1994) Dr.-Ing. thesis, Technische Hochschule Darmstadt.

    Google Scholar 

  37. Schrimpf, G. (1993) Dr.-Ing. thesis, Technische Hochschule Darmstadt.

    Google Scholar 

  38. Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987) Phys. Lett. B 195, 216.

    Article  ADS  Google Scholar 

  39. Forrest, B. M. and Suter, U. W. (1994) J. Chem. Phys. 101, 2616.

    Article  ADS  Google Scholar 

  40. Parinello, M. and Rahmann, A. (1980) Phys. Rev. Lett. 45, 1196.

    Article  ADS  Google Scholar 

  41. Nose, S. and Klein, M. L. (1983) Mol. Phys. 50, 1055.

    Article  ADS  Google Scholar 

  42. Nicklas, K. (1993) Dr.-Ing. thesis, Technische Hochschule Darmstadt.

    Google Scholar 

  43. Ewald, P. P. (1921) Ann. Phys. 64, 253.

    Article  MATH  Google Scholar 

  44. Dufner, H., Schlenkrich, M., and Brickmann, J. (manuscript in preparation).

    Google Scholar 

  45. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) J. Comp. Chem. 4, 187

    Article  Google Scholar 

  46. Nilsson, L. and Karplus, M. (1986) ibid. 7, 591.

    Google Scholar 

  47. Schrimpf, G., Schlenkrich, M., Brickmann, J., and Bopp, P. A. (1992) J. Phys. Chem. 96, 7404.

    Article  Google Scholar 

  48. Ding, H.-Q., Karasawa, N., and Goddard III, W. A. (1992) J. Chem. Phys. 97, 4309.

    Article  ADS  Google Scholar 

  49. Board, J. A., Causey, J. W, Leathrum Jr., J. F., Windemuth, A., and Schulten, K. (1992) Chem. Phys. Lett. 19, 89.

    Article  ADS  Google Scholar 

  50. Appel, A. W. (1985) SIAM J. Sci. Stat. Comput. Chem. 6, 85.

    Article  MathSciNet  Google Scholar 

  51. Greengard, L. and Rokhlin, V. I. (1987) J. Comput. Phys. 73, 325.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Telemann, O. and Jönsson, B. (1986) J. Comput. Chem. 7, 58.

    Article  Google Scholar 

  53. Askar, A., Space, B., and Rabitz, H. (1995) Long Time Scale Molecular Dynamics and the Subspace Method for Molecular Dynamics, this volume.

    Google Scholar 

  54. Tuckerman, M., Berne, B. J., and Martyna, G. J. (1992) J. Chem. Phys. 97, 1990.

    Article  ADS  Google Scholar 

  55. Sexton, J. C. and Weingarten, D. H. (1992) Nucl. Phys. B Proc. Suppl. 26, 613.

    Article  ADS  Google Scholar 

  56. Humphreys, D. D., Friesner, R. A., and Berne, B. J. (1994) J. Phys. Chem. 98, 6885.

    Article  Google Scholar 

  57. Procacci, P. and Berne, B. J. (1994) J. Chem. Phys. 101, 2421.

    Article  ADS  Google Scholar 

  58. Tuckerman, M. and Parrinello, M. (1994) J. Chem. Phys. 101, 1302.

    Article  ADS  Google Scholar 

  59. Tuckerman, M. and Parrinello, M. (1994) J. Chem. Phys. 101, 1316.

    Article  ADS  Google Scholar 

  60. Van der Ploeg, P. and Berendsen, H. J. C. (1982) J. Chem. Phys. 76, 3271.

    Article  ADS  Google Scholar 

  61. Egberts, E. and Berendsen, H. J. C. (1988) J. Chem. Phys. 89, 3718.

    Article  ADS  Google Scholar 

  62. Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., and Hermans, J. (1981) in B. Pullmann (ed), Intermolecular Forces ,Reidel, Dordrecht, p. 331.

    Google Scholar 

  63. Bocker, J. (1993) Dr.-Ing. thesis, Technische Hochschule Darmstadt.

    Google Scholar 

  64. Bocker, J., Schlenkrich, M., Bopp, P. A., and Brickmann, J. (1992) J. Phys. Chem. 96, 9915.

    Article  Google Scholar 

  65. Jorgensen, W. L., Chandrasekharm, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) J. Chem. Phys. 79, 926.

    Article  ADS  Google Scholar 

  66. Bradly, J. E., Lee, E. M., Thomas, R. K., Willatt, A. J., Penfold, J., Ward, R. C, Gregory, D. P., and Waschkowski, W. (1988) Langmuir 4, 821.

    Article  Google Scholar 

  67. J. B. Rijnbout, J. Colloid Interface Sci. 62, 81 (1977).

    Article  Google Scholar 

  68. Lu, J. R., Simister, E. A., Thomas, R. K., and Penfold, J. (1993) J. Phys. Chem. 97, 6024.

    Article  Google Scholar 

  69. Böcker, J., Bopp, P. A., and Brickmann, J. (1994) J. Phys. Chem. 98, 712.

    Article  Google Scholar 

  70. AMBER 3.1, Singh, U. C, Weiner, P. K., and Kollman, P. A. (1988) Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Fransisco.

    Google Scholar 

  71. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C, Algona, G., Profeta Jr., S., and Weiner, P. K. (1984) J. Am. Chem. Soc. 106, 765.

    Article  Google Scholar 

  72. Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A (1986) J. Comp. Chem. 7, 230.

    Article  Google Scholar 

  73. Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H.A. (1975) J. Phys. Chem. 79, 2361.

    Article  Google Scholar 

  74. Némethy, G., Pottle, M. S., and Scheraga, H. A. (1983) J. Phys. Chem. 87, 1883.

    Article  Google Scholar 

  75. Sipple, M. J., Némethy, G., and Scheraga, H. A. (1984) J. Phys. Chem. 88, 6231.

    Article  Google Scholar 

  76. Van Gunsteren, W. F. and Berendsen, H. J. C. (1987) Groningen Molecular Simulation (GROMOS) Library Manual ,Biomos, Groningen.

    Google Scholar 

  77. Hermans, J., Berendsen, H. J. C, Van Gunsteren, W. F., and Postma, J. P. M., Biopoly-mers 23, 1513.

    Google Scholar 

  78. Discover Molecular Modeling System, BIOSYM Technologies, Inc., 10065 Barnes Canyon Road, Suite A, San Diego, CA 92121.

    Google Scholar 

  79. Hagler, A. T., Lifson, S., and Dauber, P. (1979) J. Am. Chem. Soc. 101, 5122.

    Article  Google Scholar 

  80. Daubler-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., and A. Hagler, T. A. (1988) Proteins: Structure, Function, and Genetics 4, 31.

    Article  Google Scholar 

  81. Schlenkrich, M., Brickmann, J., MacKerrel, A., and Karplus, M. (manuscript in prepara-tion).

    Google Scholar 

  82. Schlenkrich, M. (1993) Dr. rer. nat. thesis, Technische Hochschule Darmstadt.

    Google Scholar 

  83. Hitchcock, P. B., Mason, R., Thomas, K. M. and Shipley, G. G. (1974) Proc. Nat. Acad. Sci. USA 71, 3036

    Article  ADS  Google Scholar 

  84. Elder, M., Hitchcock, P., Mason, R. and Shipley, G. G. (1977) Proc. R. Soc. Lond. A. 354, 157.

    Article  ADS  Google Scholar 

  85. Pearson, R. H. and Pascher, I. (1979) Nature 281, 499.

    Article  ADS  Google Scholar 

  86. Hauser, H., Pascher, I. and Sundell, S. (1980) J. Mol. Biol. 137, 249.

    Article  Google Scholar 

  87. Vollhardt, H. and Brickmann, J. (manuscript in preparation).

    Google Scholar 

  88. Mcintosh, T. J. and Simon, S. A. (1986) Biochemistry 25, 4948.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brickmann, J., Kast, S.M., Vollhardt, H., Reiling, S. (1995). Trends in Molecular Dynamics Simulation Technique. In: Yurtsever, E. (eds) Frontiers of Chemical Dynamics. NATO ASI Series, vol 470. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0345-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0345-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4153-9

  • Online ISBN: 978-94-011-0345-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics