Skip to main content

Molecules in Laser Fields

  • Chapter
Frontiers of Chemical Dynamics

Part of the book series: NATO ASI Series ((ASIC,volume 470))

Abstract

Current laser technology is capable of generating laser fields from the IR to visible wavelength regions in the form of well-tailored sequences of pulses with controllable phase and envelopes (pulse shape) [1–2]. Such pulses can be used for the efficient preparation of ensembles of atoms or molecules in specific states. This is of considerable interest not only in spectroscopy but also in studies of chemical dynamics [2–4]. Furthermore short pulses allow one to attain electric field strengths ε (V cm-1) or equivalently laser intensities I (W/cm2) = cε 2/8π (c = velocity of light) which are comparable or greater than atomic fields. An important consequence of the progress in this area is that one can greatly enhance radiative transition rates and even ionize molecules. Clearly strong field science and short pulse science are two fields which will become increasingly intertwined. Efficient rapid excitation requires increasingly higher intensities as can be seen from the simple example of a resonantly driven two-level system [6–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warren, W.S., and Haner, M. (1988), in Atomic and Molecular Processes with Short Intense Laser Pulses ,ed. A.D. Bandrauk, NATO ASI, vol. B171, Plenum Press, N.Y., pp. 1–11.

    Chapter  Google Scholar 

  2. Bandrauk, A.D. (1993). Molecules in Laser Fields ,Marcel Dekker, N.Y.

    Google Scholar 

  3. Bandrauk, A.D., Gauthier, and J.M., and McCann, J.F. (1993); Chem. Phys. Lett. 200, 399

    Article  ADS  Google Scholar 

  4. (1994); J. Chem. Phys 100 340.

    Article  ADS  Google Scholar 

  5. Chelkowski, S.. Bandrauk. A.D.. and Corkum, P.B. (1990), Phys. Rev. Lett 65, 2355.

    Article  ADS  Google Scholar 

  6. Chelkowski, S., and Bandrauk, A.D. (1991), Chem. Phys. Lett 186264.

    Article  ADS  Google Scholar 

  7. Allan, J. and Eberly, J.H. (1975), Optical Resonances and Two-Level Atoms ,J. Wiley Press, N.Y.

    Google Scholar 

  8. Chelkowski, S., and Bandrauk, A.D. (1988). J. Chem. Phys 89, 3618.

    Article  ADS  Google Scholar 

  9. Keldoysh, L.V. (1965). Sow Phys JETP 20. 1307.

    Google Scholar 

  10. Corkum, P.B., Burnett. N.H. and Brunei, F. (1989), Phys. Rev. Lett 62, 1259.

    Article  ADS  Google Scholar 

  11. Dietrich. P., and Corkum, P.B. (1992). J. Chem. Phys 97, 3187.

    Article  ADS  Google Scholar 

  12. Zuo, T., Chelkowski. S.. and Bandrauk, A.D. (1992), Phys. Rev A465342.

    ADS  Google Scholar 

  13. George, T.F., Zimmerman. I.H.. Yuan. J.M.. Laing, J.R., and Devries, P.L. (1977). Acc. Chem. Res 10, 449.

    Article  Google Scholar 

  14. George, T.F. (1982), J. Phys. Chem 86. 10.

    Article  Google Scholar 

  15. Bandrauk, A.D., and Sink. M.L. (1978). Chem. Phys. Lett 57, 569.

    Article  ADS  Google Scholar 

  16. Bandrauk, A.D., and McCann, J.F. (1989). Comments. Atom. Molec. Phys 22, 325.

    Google Scholar 

  17. Verschmur, J., Noordham. L.D. and van Linden van den Heuvell, H.B., (1989), Phys. Rev A404383.

    ADS  Google Scholar 

  18. Zavriyev, A. and Bucksbaum. P.H. (1993). in Molecules in Laser Fields ,ed. A.D. Bandrauk, Marcel Dekker, N.Y., Chap. 2.

    Google Scholar 

  19. Allendorf, S.W., and Szoke, A., (1991). Phys. Rev A44 518.

    ADS  Google Scholar 

  20. Aubanel, E.E., Zuo, T., and Bandrauk, A.D. (1994), Phys. Rev A493776.

    ADS  Google Scholar 

  21. Bandrauk, A.D. (1994). Internal!. Rev. Phys. Chem 13 123.

    Article  Google Scholar 

  22. Bandrauk. A.D., and Shen. H (1993)..J. Chem. Phys 176. 428.

    Google Scholar 

  23. Lee. T.D. (1981), Particle Physics and Field Theory ,Harwood Academic, N.Y.

    Google Scholar 

  24. Cohen-Tannoudji, C., DupoM-Roc, J., and Grynberg G. (1989), Photons and Atoms ,J. Wiley Press, N.Y.

    Google Scholar 

  25. Mittleman. M.H. (1982). Introduction to the Theory of Laser-Atom Interactions ,Plenum Press, N.Y.

    Book  Google Scholar 

  26. Faisal, F.H.M. (1988). Theory of Multiphoton Processes ,Plenum Press, N.Y.

    Google Scholar 

  27. Glauber, R.J. (1963), Phys. Rev 1302529; 1312766.

    Article  MathSciNet  ADS  Google Scholar 

  28. Goldin, E. (1982), Waves and Photons J. Wiley Publishers, N.Y., Chap. 7.

    Google Scholar 

  29. Lefebvre-Brion, H.. and Field, R.F. (1986), Perturbation in Spectra of Diatomic Molecules ,Academic Press, Orlando.

    Google Scholar 

  30. Bandrauk, A.D., and Atabek. O., (1987).Adv. Chem. Phys ,chap. 19. vol. 73.

    Google Scholar 

  31. Loudon, R. (1973), Quantum Theory of Light ,Oxford Press, London.

    Google Scholar 

  32. Broers, B., van Linden van den Heuvell, H.B., and Noordham, L.D. (1992), Phys. Rev. Lett 69, 2062.

    Article  ADS  Google Scholar 

  33. Aubanel, E., Gauthier, J.M., and Bandrauk, A.D. (1993), Phys. Rev A48 2145.

    ADS  Google Scholar 

  34. Aubanel, E., Bandrauk, A.D., and Rancourt. P. (1992), Chem. Phys. Lett 197 419.

    Article  ADS  Google Scholar 

  35. Miret-Artes, S., Atabck, O., and Bandrauk, A.D. (1992), Phys. Rev A45 8056.

    ADS  Google Scholar 

  36. Power, E.A., and Thirumamachandran, J. (1983), Phys. Rev A28 2649.

    ADS  Google Scholar 

  37. Bloch, F., and Nordsieck, A. (1937), Phys. Rev 5254.

    Article  ADS  Google Scholar 

  38. Pauli, W., and Fierz, M. (1938), Nuovo Ciments 16, 167.

    Article  Google Scholar 

  39. Welton, T.A. (1963), Phys. Rev 131 2766.

    Article  MathSciNet  ADS  Google Scholar 

  40. Henneberger, W.D. (1968), Phys. Rev. Lett 21 838.

    Article  ADS  Google Scholar 

  41. Chanmugan, G., and Schweber, S.S. (1969), Phys. Rev Al, 1369.

    Google Scholar 

  42. Bandrauk, A.D., Kalman, O.F., and Nguyen-Dang, T.T. (1986), J. Chem. Phys 84 6761.

    Article  ADS  Google Scholar 

  43. Bandrauk, A.D., and Nguyen-Dang, T.T. (1985), J. Chem. Phys 83 2840.

    Article  ADS  Google Scholar 

  44. Ford, G.W., and O’Connell. R.F., (1976). Phys. Rev A13 1281.

    ADS  Google Scholar 

  45. Bethe, H.A.; and Salpeter, E.E., (1957). Quantum Mechanics of 1 and 2-Electron Atoms ,Springer, Berlin.

    Google Scholar 

  46. Zuo, T.; and Bandrauk, A.D., to be submitted to Phys. Rev. A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bandrauk, A.D. (1995). Molecules in Laser Fields. In: Yurtsever, E. (eds) Frontiers of Chemical Dynamics. NATO ASI Series, vol 470. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0345-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0345-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4153-9

  • Online ISBN: 978-94-011-0345-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics