Skip to main content

In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes

  • Chapter
Molecular Microbial Ecology Manual

Abstract

The sequencing of 16S and 23S ribosomal RNA (rRNA) molecules is currently the gold standard for the classification of new microbial isolates. Comparative analyses of these sequences are for the first time in the history of microbiology facilitating the reconstruction of universal phylogenetic trees [38]. Among many other important findings the work of Carl Woese and his colleagues demonstrated that only certain (by far not all) phenotypic/physiological groups of micro-organisms are monophyletic (e.g., methanogenes, cyanobacteria, spirochetes). About 10 years ago it has been proposed to use an rRNA approach for studies in microbial ecology [21]. The microbial diversity should be analyzed in a cultivation-independent way by direct rRNA sequence retrieval, whereas nucleic acid probes complementary to rRNA or rRNA genes should be the tools to monitor population dynamics in the environmental samples. By their own nature rRNA-targeted probes track genotypes which are not necessarily linked to one phenotype. Microbial ecologists who want to apply this approach to investigate correlations between community structures and functions should be aware of this fact and design or apply rRNA-targeted probes accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 1919–1925.

    PubMed  CAS  Google Scholar 

  2. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative phylogenetic, and environmental studies in microbiology. J Bacteriol 172: 762–770.

    PubMed  CAS  Google Scholar 

  3. Amann RI, Stromley J, Devereux R, Key R, Stahl DA (1992) Molecular and microscopic identification of sulphate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58: 614–623.

    PubMed  CAS  Google Scholar 

  4. Amann R, Springer N, Ludwig W, Görtz H-D, Schleifer K-H (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature (London) 351: 161–164.

    Article  CAS  Google Scholar 

  5. Amann R, Zarda B, Stahl DA, Schleifer K-H (1992) Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 58: 3007–3011.

    PubMed  CAS  Google Scholar 

  6. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89: 5685–5689.

    Article  PubMed  CAS  Google Scholar 

  7. DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259: 803–806.

    Article  PubMed  CAS  Google Scholar 

  8. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells. Science 243: 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  9. Devereux R, Kane MD, Winfrey J, Stahl DA (1992) Genus and group-specific hybridization probes for determinative and environmental studies of sulphate-reducing bacteria. System Appl Microbiol 15: 601–610.

    Article  CAS  Google Scholar 

  10. Embley TM, Finlay BJ, Brown S (1992) RNA sequence analysis shows that the symbionts in the ciliate Mctopus contortus are polymorphs of a single methanogen species. FEMS Microbiol Lett 97: 57–62.

    Article  CAS  Google Scholar 

  11. Embley TM, Finlay BJ, Thomas RH, Dyal PL (1992) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Mctopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol 138: 1479–1487.

    PubMed  CAS  Google Scholar 

  12. Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature (London) 356: 148–149.

    Article  CAS  Google Scholar 

  13. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature (London) 345: 60–63.

    Article  CAS  Google Scholar 

  14. Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170: 720–726.

    PubMed  CAS  Google Scholar 

  15. Hahn D, Amann RI, Ludwig W, Akkermans ADL, Schleifer KH (1992) Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol 138: 879–887.

    PubMed  CAS  Google Scholar 

  16. Johnson MT, Read BA, Manko AM, Pappas G, Johnson BA (1986) A convenient new method for desalting, deproteinizing, concentrating DNA or RNA. Biotechniques 4: 64–70.

    CAS  Google Scholar 

  17. Larsen N, Olsen GJ, Maidak BL, McCaughey MJ, Overbeek R, Macke TJ, Marsh TL, Woese CR (1993) The ribosomal database project. Nucleic Acids Res 21: 3021–3023.

    Article  PubMed  CAS  Google Scholar 

  18. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. System Appl Microbiol 15: 593–600.

    Article  Google Scholar 

  19. Manz W, Szewzyk U, Eriksson P, Amann R, Schleifer KH, Stenström T-A (1993) in situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol 59: 2293–2298.

    PubMed  CAS  Google Scholar 

  20. Neef JM, Vandepeer Y, DeRijk P, Chapelle S, De Wächter R (1993) Compilation of small ribosomal subnit RNA structures. Nucleic Acids Res 21: 3025–3049.

    Article  Google Scholar 

  21. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann Rev Microbiol 40: 337–365.

    Article  CAS  Google Scholar 

  22. Poulsen LK, Ballard G, Stahl DA (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol 59: 1354–1360.

    PubMed  CAS  Google Scholar 

  23. Ramsing NB, Kühl M, Jörgensen BB (1993) Distribution of sulphate-reducing bacteria, 02 and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59: 3820–3849.

    Google Scholar 

  24. Roller C, Wagner M, Amann, R, Ludwig W, Schleifer K-H (1994) In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiol 140: 2849–2858.

    Article  CAS  Google Scholar 

  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. Second edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor USA.

    Google Scholar 

  26. Spring S, Amann R, Ludwig W, Schleifer, N Petersen K-H (1992) Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. System Appl Microbiol 15: 116–122.

    Article  Google Scholar 

  27. Spring S, Amann R, Ludwig W, Schleifer KH, Gemerden H van, Petersen N (1993) Dominating role of an unusual magnetotactic bacterium in the microaerophilic zone of a freshwater sediment. Appl Environ Microbiol 59: 2397–2403.

    PubMed  CAS  Google Scholar 

  28. Springer N, Ludwig W, Amann R, Schmidt HJ, Görtz H-D, Schleifer K-H (1993) Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc Natl Acad Sei USA 90: 9892–9895.

    Article  CAS  Google Scholar 

  29. Springer N, Ludwig W, Drozanski V, Amann R, Schleifer K-H (1992) The phylogenetic status of Sarcobium lyticum, an obligate intracellular bacterial parasite of small amoebae. FEMS Microbiol Lett 96: 199–202.

    Article  CAS  Google Scholar 

  30. Stackebrandt E, Liesack W, Goebel BM (1993) Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J 7: 232–236.

    PubMed  CAS  Google Scholar 

  31. Stahl DA, Amann RI (1991) Development and application of nucleic acid probes in bacterial systematics (p. 205–248). In: Stackebrandt E, Goodfellow M. (eds) Sequencing and Hybridization Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England.

    Google Scholar 

  32. Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988) The use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54: 1079–1084.

    PubMed  CAS  Google Scholar 

  33. Szewzyk U, Manz W, Amann R, Schleifer K-H, Stenström T-A (1994) Growth and in situ detection of a pathogenic Escherichia coli in biofilms of a heterotrophic water bacterium by use of 16S- and 23S-rRNA-directed fluorescent oligonucleotide probes. FEMS Microbiol Ecol 13: 169–175.

    Article  CAS  Google Scholar 

  34. Torsvik V, Goksoyr J, Daae FL (1990) High diversity of DNA of soil bacteria. Appl Environ Microbiol 56: 782–787.

    PubMed  CAS  Google Scholar 

  35. Wagner M, Amann R, Kämpfer P, Aßmus B, Hartmann A, Hutzier P, Springer N, Schleifer KH (1994) Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. System Appl Microbiol 17: 405–417.

    Article  Google Scholar 

  36. Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59: 1520–1525.

    PubMed  CAS  Google Scholar 

  37. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization of suspended cells with rRNA-targeted oligonucleotide probes for the flow cytometric identification of micro-organisms. Cytometry 14: 136–143.

    Article  PubMed  CAS  Google Scholar 

  38. Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured micro-organisms in a natural community. Nature (London) 345: 63–65.

    Article  CAS  Google Scholar 

  39. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271.

    PubMed  CAS  Google Scholar 

  40. Zarda B, Amann R, Wallner G, Schleifer KH (1991) Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides. J Gen Microbiol 137: 2823–2830.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Amann, R.I. (1995). In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In: Akkermans, A.D.L., Van Elsas, J.D., De Bruijn, F.J. (eds) Molecular Microbial Ecology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0351-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0351-0_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4156-0

  • Online ISBN: 978-94-011-0351-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics