Skip to main content

Parasites increase fluctuating asymmetry of male Drosophila nigrospiracula: implications for sexual selection

  • Chapter
Developmental Instability: Its Origins and Evolutionary Implications

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 2))

Abstract

Fluctuating asymmetry (minor deviations from perfect bilateral symmetry) is manifested by individuals less able to buffer environmental stress during development. I utilized a system of two naturally-occurring parasites of Drosophila nigrospiracula to test whether parasitic infection during host development yields elevated degrees of fluctuating asymmetry in two morphological traits of males. This hypothesis has important implications for sexual selection, as it may explain why asymmetric males are often found to be sexually disadvantaged. In my system, nematodes infect larvae and therefore are more likely to disrupt development than mites which only parasitize adult flies. As predicted, nematode-infected male D. nigrospiracula had a higher degree of bristle asymmetry than did mite-infested and control (carrying neither parasite) males. There was also a significant relation between nematode number and degree of asymmetry. There was a significant negative relation between nematode load and size of adult males, implicating a causal link between nutritional stress during host development and fluctuating asymmetry. Patterns of wing length asymmetry were inconsistent with those of bristle asymmetry. Nematode-infected males did not differ in wing length asymmetry relative to mite-infested and control males, nor was there a significant relation between nematode number and wing asymmetry. This inconsistency in expression of asymmetry may reflect different intensities of selection operating on each morphological trait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, K., Y. Furuta & K. Nakamura, 1966. Selection of a resistant strain to virus induction in the silkworm Bombyx mori. J. Sericult. Sci. Jap. 30: 403–412.

    Google Scholar 

  • Anderson, R. M. & D. M. Gordon, 1982. Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85: 373–398.

    Article  PubMed  Google Scholar 

  • Bailit, H. L., P. L. Workman, J. D. Niswander & C. J. MacLean, 1970. Dental asymmetry as an indicator of genetic and environmental conditions in human populations. Hum. Biol. 42: 626–638.

    PubMed  CAS  Google Scholar 

  • Balmford, A & A. Thomas, 1992. Swallowing ornamental asymmetry. Nature 359: 487.

    Article  Google Scholar 

  • Begon, M., 1982. Yeasts and Drosophila, pp. 345–384 Vol 3b in The Genetics and Biology of Drosophila, edited by M. Ashburner,H. L. Carson & J. N. Thompson. Academic Press, London.

    Google Scholar 

  • Borgia, G. & K. Collis, 1989. Female choice for parasite-free male satin bowerbirds and the evolution of bright male plumage. Behav. Ecol. Sociobiol. 25: 445–454.

    Article  Google Scholar 

  • Borgia, G. & G. Wilkinson, 1992. Swallowing ornamental asymmetry. Nature 359: 487–488.

    Article  Google Scholar 

  • Clarke, B. C., 1979. The evolution of genetic diversity. Proc. R. Soc. Lond. 205: 453–474.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, G. M., 1992. Fluctuating asymmetry: A technique for measuring developmental stress of genetic and environmental origin. Acta Zool. Fennica 191: 31–35.

    Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature 325: 345–346.

    Article  CAS  Google Scholar 

  • Clayton, D. H., 1991. The influence of parasites on host sexual selection. Parasitology Today 7: 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, E. W., 1992. Development of insect resistance to biopesticides. Pesq. agropec. bras. 27: 47–57.

    Google Scholar 

  • Demerec, M., 1965. Biology of Drosophila. Hafner Publishing, New York.

    Google Scholar 

  • Eanes, W. F., 1978. Morphological variance and enzyme heterozygosity in the monarch butterfly. Nature 276: 263–264.

    Article  Google Scholar 

  • Edwards, J. C. & C. J. Barnard, 1987. The effects of Trichinella infections on intersexual interactions between mice. Anim.Behav. 35: 533–540.

    Article  Google Scholar 

  • Endler, J. A., 1986. Natural selection in the wild. Princeton University Press, Princeton.

    Google Scholar 

  • Forbes, M. R. L., 1992. Parasitism and host reproductive effort. Oikos, in press.

    Google Scholar 

  • Hamilton, W. D., 1982. Pathogens as causes of genetic diversity in their host populations, pp. 269–296 in Population Biology of Infectious Disease Agents, edited by R. M. Anderson & R. M. May. Verlag-Chemie, Weinheim.

    Chapter  Google Scholar 

  • Hamilton, W. D. & M. Zuk, 1982. Heritable true fitness and bright birds: A role for parasites? Science 218: 384–386.

    Article  PubMed  CAS  Google Scholar 

  • Heisler, I. L., 1984. A quantitative genetic model for the origin of mating preferences. Evolution 38: 1283–1295.

    Article  Google Scholar 

  • Houde, A. E. & A. J. Torio, 1992. Effect of parasitic infection on male color pattern and female choice in guppies. Behav. Ecol. 3:346–351.

    Article  Google Scholar 

  • Howard, R. D. & D. J. Minchella, 1990. Parasitism and mate competition. Oikos 58: 120–122.

    Article  Google Scholar 

  • Jaenike, J., 1988. Parasitism and male mating success in Drosophila testacea. Am. Nat. 131: 774–780.

    Article  Google Scholar 

  • Jaenike, J., 1992. Mycophagous Drosophila and their nematodc parasites. Am. Nat. 139: 893–906.

    Article  Google Scholar 

  • Johnston, J. S. & W. B. Heed, 1976. Dispersal of desert-adapted Drosophila: The saguaro-breeding D. nigrospiracula. Am. Nat. 110:629–651.

    Article  Google Scholar 

  • Keiding, J., 1977. Resistance in the housefly in Denmark and elsewhere, pp. 261–302 in Pesticide Management and Insecticide Resistance, edited by D. L. Watson & A. W. A. Brown. Academic Press, New York.

    Google Scholar 

  • Kennedy, C. E. J., J. A. Endler, S. L. Poynton & H. McMinn, 1987. Parasite load predicts mate choice in guppies. Behav. Ecol. Sociobiol. 21: 291–295.

    Article  Google Scholar 

  • King, D. P. E, 1985. Enzyme heterozygosity associated with anatomical character variance and growth in the herring (Clupea harengus L.). Heredity 54: 289–296.

    Article  PubMed  Google Scholar 

  • Kirkpatrick, M. & M. J. Ryan, 1991. The evolution of mating preferences and the paradox of the lek. Nature 350: 33–38.

    Article  Google Scholar 

  • Kodrick-Brown, A. & J. H. Brown, 1984. Truth in advertising: The kinds of traits favored by sexual selection. Am. Nat. 309–323.

    Google Scholar 

  • Lakovaara, S. & A. Saura, 1982. Evolution and speciation in the Drosophila obscura group, pp. 2–52 Vol 3b in The Genetics and Biology of Drosophila, edited by M. Ashburner, H. L. Carson & J. N. Thompson. Academic Press, London.

    Google Scholar 

  • Leary, R. F. & F. W. Allendorf, 1989. Fluctuating asymmetry as an indicator of stress: Implications for conservation biology. Trends Ecol. Evol. 4: 214–217.

    Article  PubMed  CAS  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1984. Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. Am. Nat. 124: 540–551.

    Article  Google Scholar 

  • Livshits, G. & E. Kobyliansky, 1991. Fluctuating asymmetry as a possible measure of developmental homeostasis in hunians:A review. Hum. Biol. 63: 441–466.

    PubMed  CAS  Google Scholar 

  • Markow, T. A., 1987. Genetic and sensory basis of sexual selection in Drosophila, pp. 89–95 in Evolutionary Genetics of Invertebrate Behavior, edited by M. D. Huettel. Plenun Publishing.

    Google Scholar 

  • Markow, T. A., 1988. Reproductive behavior of Drosophik melanogaster and D. nigrospiracula in the field and in tht laboratory. J. Comp. Psychol. 102: 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Markow, T. A. & J. P. Ricker, 1992. Male size, developmental stability, and mating success in natural populations of three Drosophila species. Heredity 69: 122–127.

    Article  PubMed  Google Scholar 

  • Mitton, J. B., 1978. Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273: 661–662.

    Article  PubMed  CAS  Google Scholar 

  • Mitton, J. B. & M. C. Grant, 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis.Ann. Rev. Ecol. Syst. 15: 470–499.

    Article  Google Scholar 

  • Møller, A. P., 1990. Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Anim. Behav. 40: 1185–1187.

    Article  Google Scholar 

  • Møller, A. P., 1991. Sexual ornament size and the cost of fluctuating asymmetry. Proc. R. Soc. Lond. B 243: 59–62.

    Article  Google Scholar 

  • Møller, A. P., 1992a. Female swallow preference for symmetrical male sexual ornaments. Nature 357: 238–240.

    Article  PubMed  Google Scholar 

  • Møller, A. P., 1992b. Swallowing ornamental asymmetry. Nature 359: 488.

    Article  Google Scholar 

  • Møller, A. P., 1992c. Patterns of fluctuating asymmetry in weapons:evidence for reliable signalling of quality in beetle horns and bird spurs. Proc. R. Soc. Lond. B 248: 199–206.

    Article  Google Scholar 

  • Møller, A. P. & J. Höglund, 1991. Patterns of fluctuating asymmetry in avian feather ornaments: implications for models of sexual selection. Proc. R. Soc. Lond. B 245: 1–5.

    Article  Google Scholar 

  • Moore, J., 1984. Altered behavioural responses in intermediate hosts — an acanthocephalan parasite strategy. Am. Nat. 123: 572–577.

    Article  Google Scholar 

  • Mulla, M. S., 1977. Resistance in Culicine mosquitoes in California-Countermeasures,pp. 239–260 in Pesticide Management and Insecticide Resistance, edited by D. L. Watson & A. W. A. Brown. Academic Press, New York.

    Google Scholar 

  • Neter, J., W. Wasserman & M. H. Kutner, 1990. Applied Linear Statistical Models. Richard D. Irwin, Boston.

    Google Scholar 

  • Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Annu. Rev. Ecol. Syst. 17: 391–421.

    Article  Google Scholar 

  • Palmer, A. R. & C. Strobeck, 1992. Fluctuating asymmetry as a measure of developmental stability: Implications of nonnormal distributions and power of statistical tests. Acta Zool. Fennica 191: 57–72.

    Google Scholar 

  • Petersen, J. J., 1978. Development of resistance by the southern house mosquito to the parasitic nematode Romanonermis culicivorax. Environment. Entomol. 7: 518–520.

    Google Scholar 

  • Poinar, G. O. Jr., 1983. The natural history of nematodes. Prentice-Hall,Englewood Cliffs, NJ.

    Google Scholar 

  • Poinar, G. O. Jr., 1984. First fossil record of parasitism by insect parasitic Ty lenchida (Allantonematidae: Nematoda). J. Parasit.70: 306–308.

    Article  Google Scholar 

  • Read, A. F., 1987. Comparative evidence supports the Hamilton and Zuk hypothesis on parasites and sexual selection. Nature 327: 68–70.

    Article  Google Scholar 

  • Read, A. F., 1988. Sexual selection and the role of parasites. Trends Ecol. Evol. 3: 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Reeve, E. C. R., 1960. Some genetic tests on asymmetry of sternopleural chaeta number in Drosophila. Genet. Res., Camb. 1: 151–172.

    Article  Google Scholar 

  • Robertson, F. S. & E. Reeve, 1952. Studies in quantitative inheritance. I. The effects of selection of wing and thorax length in Drosophila melanogaster. J. Genet. 50: 414–448.

    Article  Google Scholar 

  • Sang, J. H., 1956. The quantitative nutritional requirements of Drosophila melanogaster. J. Exptl. Biol. 33: 45–72.

    CAS  Google Scholar 

  • Sokal, R. R. & J. Rohlf, 1981. Biometry. The principles and practice of statistics in biological research. W. H. Freeman and Co., New York.

    Google Scholar 

  • Soulé, M. E., 1979. Heterozygosity and developmental stability: another look. Evolution 33: 396–401.

    Article  Google Scholar 

  • Soulé, M. E., 1982. Allometric variation. I. The theory and some consequences. Am. Nat. 120: 751–764.

    Article  Google Scholar 

  • Soulé, M. E. & J. Cuzin-Roudy, 1982. Allometric variation. II. Developmental instability of extreme phenotypes. Am. Nat. 120: 765–786.

    Article  Google Scholar 

  • Spurrier, M. F., M. S. Boyce & F. J. M. Manly, 1991. Effects of parasites on mate choice by captive sage grouse, pp. 389–398 in Bird-Parasite Interactions, edited by J. E. Loye & M. Zuk. Oxford University Press, Oxford.

    Google Scholar 

  • Steinhaus, E. A., 1949. Principles of Insect Pathology. McGraw Hill, New York.

    Google Scholar 

  • Thoday, J. M., 1956. Balance, heterozygosity and developmental instability. Cold Spring Harbor Symp. Quant. Biol. 21: 318–326.

    Google Scholar 

  • Thornhill, R., 1992. Female preference for the pheromone of males with low fluctuating asymmetry in the Japanese scorpionfly (Panorpa japonica: Mecoptera). Behav. Ecol. 3: 277–283.

    Article  Google Scholar 

  • Trivers, R. L., 1972. Parental investment and sexual selection, pp. 136–179 in Sexual Selection and the Descent of Man, 1871–1971, edited by B. Campbell. Aldine Press, Chicago.

    Google Scholar 

  • Valentine, D. W., M. E. Soulé & P. Samallow, 1973. Asymmetry analysis in fishes: a possible indicator of environmental stress. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 71: 357–370.

    Google Scholar 

  • Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.

    Article  Google Scholar 

  • Waddington, C. H., 1957. The Strategy of the Genes. McMillan, New York.

    Google Scholar 

  • Wakelin, D., 1985. Genetic control of immunity to helminth infections. Parasitology Today 1: 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Ward, P. I., 1988. Sexual dichromatism and parasitism in British and Irish freshwater fish. Anim. Behav. 36: 1210–1215.

    Article  Google Scholar 

  • Watanabe, H., 1987. The host population, pp. 71–112 in Epizootiology of Insect Diseases, edited by J. R. Fuxa & Y. Tanada. John Wiley & Sons, New York.

    Google Scholar 

  • Watt, W. B., R. C. Cassin & M. S. Swan, 1983. Adaptations to specific loci. III. Field behavior and survivorship differences among Colias PGI genotypes are predictable from in vitro biochemistry. Genetics 103: 725–739.

    PubMed  CAS  Google Scholar 

  • Welch, H. E., 1959. Taxonomy, life cycle, development, and habits of two new species of Allantonematidae (Nematoda) parasitic in Drosophilid flies. Parasitology 49: 83–103.

    Article  PubMed  CAS  Google Scholar 

  • Welch, H. E., 1963. Nematode infections, pp. 363–392 in Insect Pathology, An Advanced Treatise Volume 2, edited by E. A. Steinhaus. Academic Press, New York.

    Google Scholar 

  • Woodard, D. B. & T. Fukuda, 1977. Laboratory resistance of the mosquito Anopheles quadrimaculatus to the mermithid nematode Diximermis peterseni. Mosquito News 37: 192–195.

    Google Scholar 

  • Yamaguchi, T., 1977. Studies on the handedness of the fiddler crab, Uca lactea. Biol. Bull. 152: 424–436.

    Article  Google Scholar 

  • Zuk, M., 1991. Parasites and bright birds: new data and a new prediction, pp. 317–327 in Bird-Parasite Interactions, edited by J. E. Loye & M. Zuk. Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Therese Ann Markow

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Polak, M. (1994). Parasites increase fluctuating asymmetry of male Drosophila nigrospiracula: implications for sexual selection. In: Markow, T.A. (eds) Developmental Instability: Its Origins and Evolutionary Implications. Contemporary Issues in Genetics and Evolution, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0830-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0830-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4357-1

  • Online ISBN: 978-94-011-0830-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics