Skip to main content

Immersion Cooling of Digital Computers

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 258))

Abstract

The present work reviews the theory and practice of direct liquid cooling of microelectronic components. A morphological analysis is suggested for the classification of liquid-cooling concepts. While both immersion and microgroove cooling of chips are discussed, the emphasis is on immersion cooling. The performance of individual chips and liquid incapsulated modules, including the submerged condenser, is reviewed in detail, with data presented. Flow-through modules and falling-film techniques are also discussed. Finally, figures-of-merit for coolants are noted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T. M. and Mudawwar, I. (1988).“Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid,” ASME Proc.1988 Nat’l Heat Transfer Conf, Vol. 1, HTD-96, ASME, New York, pp. 551–560.

    Google Scholar 

  • Andros, F. E. and Shay, R. J. E. (1982).“Micro helix thermo capsule,” U.S. Patent No. 4,313,492, Feb 2.

    Google Scholar 

  • Baker, E. (1972). “Liquid cooling of microelectronic devices by free and forced convection,” Microelectronics and Reliability, Vol. 11, pp. 213–222.

    Article  Google Scholar 

  • Baker, E. (1973).“Liquid immersion cooling of small electronic devices,” Microelectronic and Reliability, Vol. 12, pp. 163–173.

    Article  Google Scholar 

  • Bankoff, S. G., Hajjar, A. J., and McGlothin, Jr., B. B. (1958). “On the nature and location of bubble nucleii in boiling from surfaces,” J Applied Physics, Vol. 29, No. 12, pp. 1739–1741.

    Article  Google Scholar 

  • Bar-Cohen, A. (1987). “Thermal management of air and liquid-cooled multichip modules,” IEEE Trans.Components, Hybrids, and Manufacturing Tech., Vol. CHMT-10, pp. 159–175.

    Article  Google Scholar 

  • Bar-Cohen, A. and Distel, H. (1978a).“Thermal characteristics of multiple surface submerged condenser modules,” Proc. 26th HTFMI, C. T. Crowe and W. Gronshandler, eds., Stanford Univ. Press, Stanford, CA, pp. 131–142.

    Google Scholar 

  • Bar-Cohen, A. and Distel, H. (1978b). “Bubble pumped augmented natural convection in a submerged condenser system,” Proc. 26th IHTC, Hemisphere Publishing, New York, pp. 197–202.

    Google Scholar 

  • Bar-Cohen, A. and Kraus, A. D. (1990).Advances in Thermal Modeling of Electronic Compnents and Systems, Vol. 2, ASME Press, New York, NY.

    Google Scholar 

  • Bar-Cohen, A., Mudawwar, I., and Whalen, B. (1986).“Future challenges,” Chap.6, Research Needs in Electronic Cooling, Proc. NSF/Purdue Workship, F. P. Incropera, ed.

    Google Scholar 

  • Bar-Cohen, A., Perelman, G., and Sabag, A. (1987). “Bubble pumped convective augme nation on vertical submerged condenser surfaces,” Proc. ASME/JSME Thermal Eng. Joint Conf, Vol. 3, Hawaii, pp. 431–440.

    Google Scholar 

  • Bar-Cohen, A. and Simon, T. W. (1988). “Wall superheat excursions in the boiling incipience of dielectric fluids,” Heat Transfer Eng., Vol. 9, No. 3, pp. 19–31.

    Article  Google Scholar 

  • Bergles, A. E., Bakhru, N., and Shires, Jr., J. W. (1968).“Cooling of high power density computer components,” Report No.DSR 70712–60, Engineering Projects Lab, Massachusetts Inst. of Technology, Nov 1988.

    Google Scholar 

  • Bergles, A. E. and Chyu, M. C. (1982).“Characteristics of nucleate pool boiling from porous metallic coatings,” J. Heat Transfer, Vol. 104, pp. 279–285.

    Article  Google Scholar 

  • Bergles, A. E. and Kim, C-J. (1988).“A method to reduce temperature overshoots in immersion cooling of electronic devices,” 1988 Proc. Intersociety Conf. on Thermal Phenomena in the Fabrication and Operation of Electronic Components, IEEE, New York, pp. 100–105.

    Chapter  Google Scholar 

  • Bergles, A. E. and Ma, C. F. (1988).“Gas jet impingement means and method,” U.S. Patent No. 4,741,385, May 3.

    Google Scholar 

  • Bergles, A. E. and Rohsenow, W. M. (1964).“The determination of forced-convection surface boiling heat transfer,” J. Heat Transfer, Vol. 86, pp. 365–372.

    Article  Google Scholar 

  • Bhavnani, S. H. and Greiner, M., editors (1991). “Heat transfer enhancement in electronics cooling,” HTD Vol. 183, ASME, New York, NY.

    Google Scholar 

  • Block, R., Silverstein, M., Arnold, J. T., and Bar-Cohen, A. (1981). “Thermal management of VHSIC-based hardware,” Proc.1st Int’l Electronic Packaging Society Conf., pp. 314–328.

    Google Scholar 

  • Bravo, H. V. and Bergles, A. E. (1976). “Limits of boiling heat transfer in a liquid filled enclosure,” Proc. 24th HTFMI, A. A. McKellop, J. W. Baughn, and H. A. Dwyer, eds., Stanford Univ. Press, Stanford, CA, pp. 114–127.

    Google Scholar 

  • Brinkman, R., Ramadhyani, S., and Incropera, F. P. (1989). “Enhancement of convective heat transfer from small heat sources to liquid coolants using strip fins,” submitted to Experimental Heat Transfer.

    Google Scholar 

  • Carvalho, R. D., and Bergles, A. E. (1990).“The influence of subcooling on the pool nucleate boiling and critical heat flux of simulated electronic chips,” Proc. 9th Int’l Heat Transfer Conf., Vol. 2, Hemisphere Publishing, New York, NY, pp. 289–294.

    Google Scholar 

  • Chawla, T. C. and Chan, S. H. (1982). “Pleat transfer from vertical and inclined boundaries of heat-generating boiling pools,” ASME J. Heat Transfer, Vol. 104, pp. 465–473.

    Article  Google Scholar 

  • Cho, C. S. K. and Sharma, J. (1987).“Burnout in a high flux element with subcooled freon,” Temperature/Fluid Measurements in Electronic Equipment, Vol.HTD-89, ASME, New York, pp. 37–43.

    Google Scholar 

  • Cho, C. S. K. and Wu, K. (1988). “Comparison of burnout characteristics in jet impingement cooling and spray cooling,” ASME Proc. 1988 Nat’l Heat Transfer Conf., Vol. 1, HTD-96, ASME, New York, pp. 561–567.

    Google Scholar 

  • Chu, R. C. (1986).“Heat transfer in electronic systems,” Heat Transfer 1986, Proc.8th Int’l Heat Transfer Conf., Vol. I, Hemisphere Publishing, Wash DC, pp. 293–305.

    Google Scholar 

  • Chu, R. C, Cohen, M. G., and Gupta, 0. (1970). “Heat transfer in a liquid cooling system,” U.S. Patent No. 3,524,497, Aug 18.

    Google Scholar 

  • Chu, R. C. and Moran, K. P. (1977). “Method for customizing nucleate boiling heat transfer from electronic units immersed in dielectric coolant,” U.S. Patent No. 4,050,507.

    Google Scholar 

  • Churchill, S. W. and Chu, H. S. (1975). “Correlating equation for laminar and turbulent free convection from a vertical plate,” Int’l J. Heat & Mass Transfer, Vol. 18.

    Google Scholar 

  • Ciccio, J. A. and Thun, R. E. (1978).“Ultra-high density VLSI modules,” IEEE Trans. Components, Hybrids and Manufacturing Tech., Vol. CHMT-1, pp. 242–248.

    Article  Google Scholar 

  • Clark, B. T. and Metreaud, C. G. (1977). “Cooling device for multilayer ceramic modules,” IBM Technical Disclosure, Vol. 20, No. 5, pp. 1769–1771.

    Google Scholar 

  • Cochran, D. L. (1968).“Boiling heat transfer in electronics,” Electronics Packaging and Production, Vol. 8, No. 7, pp. CL3–CL7.

    Google Scholar 

  • Danielson, R. D., Tousignant, Bar-Cohen, A. (1987). “Saturated pool boiling characteristics of commercially available perflourinated liquids,” Proc. ASME/JSME Thermal Eng. Joint Conf., Vol. 3, ASME, New York, pp. 419–430.

    Google Scholar 

  • Davidson, E. (1985). “Packaging technology for the IBM 3090 series systems,” presented at IEEE Computer Society Spring Workshop, Palm Desert, CA.

    Google Scholar 

  • Fairbanks, D. R., Goltsos, C. E., and Mark, M. (1967). “The submerged condenser,” 9th ASME-AIChE Nat’l Heat Transfer Conf, ASME 67-HT-15, Seattle, WA.

    Google Scholar 

  • Faris, S. (1988). Personal communication, Elsmford, New York.

    Google Scholar 

  • Freon Product Information, Dupont Product Manual C-30 (1938), T-113A (1973).

    Google Scholar 

  • Flourinert Electronic Liquids, 3M Product Manual (1985).

    Google Scholar 

  • Fujii, T. and Fujii, M. (1976). “The dependence of local Nusselt number on Prandtl number in the case of free convections along a vertical surface with uniform heat flux,” Int’l J. Heat and Mass Transfer, Vol. 19, pp. 121–122.

    Article  Google Scholar 

  • Galloway, J. E., and Mudawar, I. (1992). “Critical heat flux enhancement by means of liquid subcooling and centrifugal force induced by flow curvature,” Int’l J. Heat and Mass Transfer, Vol. 35, pp. 1247–1260.

    Article  Google Scholar 

  • Goyal, A., Jaeger, R. C, Bhavnani, S. H., Ellis, C. P., Phadke, N. K., Azimi-Rashti, M., and Goodling, J. (1993). “Formation of silicon reentrant cavity heat sinks using anisotropic etching and direct wafer bonding,” IEEE Electron Device Letters, Vol. 14, No. 1.

    Article  Google Scholar 

  • Garvey, S. and Little, W. A. (1983). “Micromini refrigerators,” Circuits Manufacturing, pp. 45–47.

    Google Scholar 

  • Gebhart, B. and Wright, N. (1988). “Boiling enhancement on microconfigured surfaces,” Int’l Comm. on Heat and Mass Transfer, Vol. 15, pp. 141–149.

    Article  Google Scholar 

  • Gersey, C. O., Willingham, T. C., and Mudawar, I. (1992). “Design parameters and practical considerations in the two-phase forced-convection cooling of multi-chip modules,” J. Electronic Packaging, Vol. 114, pp. 280–289.

    Article  Google Scholar 

  • Gerstman, J. and Griffith, P. (1965). “The effect of surface instability on laminar film condensation,” Technical Report No. 5050–36, Dept. of Mech. Eng., Mass. Inst. of Tech., Cambridge, MA.

    Google Scholar 

  • Greene, A. O. and Wightman, J. C. (1948). “Cooling electronic equipment by direct evaporation of liquid refrigerant,” Air Material Command Report PB 136065, Wright-Patterson AFB, OH.

    Google Scholar 

  • Grimley, T. A., Mudawwar, I., and Incropera, F. P. (1988). “CHF enhancement in flowing fluorocarbon liquid films using structured surfaces and flow deflectors,” Int’l J. Heat and Mass Transfer, Vol. 31, pp. 55–65.

    Article  Google Scholar 

  • Han, C. Y. and Griffith, P. (1965). “The mechanism of heat transfer in nucleate pool boilingPart I, Bubble imitation, growth, and departure,” Int’l J. Heat and Mass Transfer, Vol. 8, pp. 887–904.

    Article  MATH  Google Scholar 

  • Hwang, U. P. I. and Moran, K. P. (1981). “Boiling heat transfer of silicon integrated circuits chip mounted to a substrate,” Heat Transfer in Electronic Equipment, Vol. HTD-20, ASME, pp. 53–59.

    Google Scholar 

  • Hwang, T., Turlik, I., and Reisman, A. (1987). “A thermal module design for advanced packaging,” J. Electronic Materials, Vol. 16, pp. 347–355.

    Article  Google Scholar 

  • Incropera, F. P. (1988a). “Liquid immersion cooling of electronic components,” presented at Int’l Symp. on Cooling of Electronic and Microelectronic Equip., Dubrovnik, Yugoslavia.

    Google Scholar 

  • Incropera, F. P. (1988b). “Convection heat transfer in electronic equipment cooling,” J. Heat Transfer,Vol. 10, pp. 1097–1111.

    Article  Google Scholar 

  • Incropera, F. P., Kerby, J., Moffatt, D. F., and Ramadhyani, S. (1986). “Convection heat transfer from discrete heat sources in a rectangular channel,” Int’l J. Heat and Mass Transfer, Vol. 29, pp. 1051–1058.

    Article  Google Scholar 

  • Ivey, H. J. and Morris, D. J. (1962). “On the relevance of the vapor liquid exchange mechanism for subcooled boiling at high pressure,” U.K. Report AEEW-R-137.

    Google Scholar 

  • Jaeger, R. C., Goodling, J. S., Baginski, M. E., Ellis, C. D., Williamson, N. V., and O’Barr, R. M. (1989). “High heat flux cooling for silicon hybrid multichip packaging,” Proc. IEEE Semitherm. Conf., San Diego, CA.

    Google Scholar 

  • Jiji, L. M. and Dagan, Z. (1987). “Experimental investigation of single phase multi-jet impingement cooling of an array of microelectronic heat sources,” in Modern Developments in Cooling Technology for Electronic Equipment, W. Aung, ed., Hemisphere Publishing, New York, pp. 265–283.

    Google Scholar 

  • Joshi, Y., Kelleher, M. D., and Benedict, T. J. (1988). “National convection immersion cooling of an array of simulated electronic components in an enclosure filled with dielectric liquid,” presented at the Int’l Symp. on Cooling and Electronic and Microelectronic Equipment, Dubrovnik, Yugoslavia.

    Google Scholar 

  • Kamehara, N., Yokouchi, K., and Niwa, K. (1987). “Studies on immersion cooling for high density packaging,” ISHM 1987 Proc, pp. 175–180.

    Google Scholar 

  • Kelecy, F. J., Ramadhyani, S., and Incropera, F. P. (1987). “Effect of shrouded pin fins on forced convection cooling of discrete heat sources by direct liquid immersion,” Proc. 2nd ASME-JSME Thermal Energy Joint Conf., Vol. 3, ASME, New York, pp. 387–394.

    Google Scholar 

  • Kim, C-J. and Bergles, A. E. (1988). “Incipient boiling behavior of porous boiling surfaces used for cooling of microelectronic chips,” in Particulate Phenomena and Multiphase Transport, Vol. 2, T. N. Veziroglu, ed., Hemisphere Publishing, Wash DC, pp. 3–18.

    Google Scholar 

  • Kiper, A. M. (1984). “Impinging water jet cooling of VLSI circuits,”Int’l Comm. in Heat and Mass Transfer, Vol. 11, pp. 517–526.

    Article  Google Scholar 

  • Kishimoto, T. and Ohsaki, T. (1986), “VLSI packaging technique using liquid cooled channels,”Proc. 1986 IEEE Electronic Components Conf., pp. 595–601.

    Google Scholar 

  • Krane, R. J., Parsons, J. R., and Bar-Cohen, A. (1988). “Design of a candidate thermal control system for a cryogenically cooled computer,” IEEE Trans, on Components Hybrids and Manufacturing Tech., Vol. 11, No. 4, pp. 545–566.

    Article  Google Scholar 

  • Kraus, A. D. and Bar-Cohen, A. (1983), Thermal Analysis and Control of Electronic Equipment,McGraw-HillHemisphere Publishing, New York.

    Google Scholar 

  • Kulkarni, A. K., Jacobs, H. R., and Hwang, J. J. (1985). “Natural convection over an isothermal vertical surface immersed in a thermally stratified fluid,” ASME Paper 85-HT-40, presented at the 1985 NHTC, Denver, CO.

    Google Scholar 

  • Lee, T. Y. and Simon, T. W. (1989a). “High-heat-flux forced convection boiling from small regions,” Proc. 1989 Nat’l Heat Transfer Conf., Vol. HTD-III, ASHG, New York, pp. 7–16.

    Google Scholar 

  • Lee, T. Y. and Simon, T. W. (1989b). “Critical heat flux in forced convection boiling from small regions,” Vol. HTD-III, ASME, New York, pp 7–16.

    Google Scholar 

  • Lee, T. Y., Simon, T. W., and Bar-Cohen, A. (1989). “An investigation of short-heating-lengths effects on flow boiling critical heat flux in a subcooled turbulent flow,” in Modern Developments in Cooling Technology for Electronic Equipment, W. Aung, ed., Hemisphere Publishing, New York, pp. 435–450.

    Google Scholar 

  • Lienhard, J. H. (1982). “Corresponding state correlations of the spinodal and homogeneous nucleation hmits,” J. Heat Transfer, Vol. 104, pp. 379–381.

    Article  Google Scholar 

  • Lienhard, J. H. and Dhir, V. K. (1973). “Hydrodynamic prediction of pool boiling heat fluxes from finite bodies,” J. Heat Transfer, Vol. 95, pp. 152–158.

    Article  Google Scholar 

  • Lienhard, J. H. and Karimi, A. H. (1978). “Corresponding states correlations of the extreme liquid superheat and vapor subcooling,” J. Heat Transfer, Vol. 100, pp. 492–495.

    Article  Google Scholar 

  • Lienhard, J. H. and Karimi, A. H. (1981). “Homogeneous nucleation and the spinodal line,” J. Heat Transfer, Vol. 103, pp. 61–64.

    Article  Google Scholar 

  • Lorenz, J. J. (1971). “The effects of surface conditions on boiling characteristics,” Ph.D. thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,MA.

    Google Scholar 

  • Lyman, J. (1982). “Special reportSupercomputers demand innovation in packaging and cooling,” Electronics, Sep 22, pp. 136–146.

    Google Scholar 

  • Ma, C-F. and Bergles, A. E. (1983). “Boiling jet impingement cooling of simulated microelectronic chips,” Heat Transfer in Electronic Equipment1983, ASME, New York, pp. 5–12.

    Google Scholar 

  • Ma, C-F. and Bergles, A. E. (1986). “Jet impingement nucleate boiling,” Int’l J. Heat and Mass Transfer, Vol. 29, pp. 1095–1101.

    Article  Google Scholar 

  • Ma, C-F. and Bergles, A. E. (1988a). “Enhancement of immersion cooling of microelectronic devices by foreign gas jet impingement,” presented at Int’l Symp. on Cooling of Electronic and Microelectronic Equipment, Dubrovnik, Yugoslavia.

    Google Scholar 

  • Ma, C-F. and Bergles, A. E. (1988b). “Convective heat transfer on a small vertical heated surface in an impinging liquid jet,” Reprints of 2nd Int’l Symp. on Heat Transfer, Vol. 1, Tsinghua Univ., Beijing, China, pp. 248–255.

    Google Scholar 

  • Ma, C-F. and Zhao, D. Z. (1988). “Cooling techniques for electronic and microelectronic equipmentChinese research,” presented at Int’l Symp. on Cooling of Electronic and Microelectronic Equipment, Dubrovnik, Yugoslavia.

    Google Scholar 

  • Maddox, D. E. and Mudawwar, I. (1988). “Single and two-phase convective heat transfer from smooth and enhanced microelectronic heat sources in a rectangular channel,” ASME Proc. 1988 Nat’l Heat Transfer Conf, Vol. HTD-96, ASME, New York, pp. 533–541.

    Google Scholar 

  • Mark, M., Stephenson, M., and Goltsos, C. E. (1958). “An evaporative-gravity technique for airborne equipment cooling,” Trans. IRE, Vol. ANE-5, March, pp. 47–52.

    Google Scholar 

  • Markowitz, A. (1971). “Boiling and condensation in a liquid filled enclosure,” Ph.D. thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Markowitz, A. and Bergles, A. E. (1972). “Operational limits of a submerged condenser,” Progress in Heat and Mass Transfer, Vol. 6, Pergammon Press, Oxford, pp. 701–716.

    Google Scholar 

  • Marto, P. J. and Lepere, V. J. (1982). “Pool boiling heat transfer from enhanced surfaces to dielectric liquids,” J. Heat Transfer, Vol. 104, pp. 292–299.

    Article  Google Scholar 

  • McLure, I. A., Virgilio, A. M. S., and Edmonds, B. (1982). “Surface tension of perfluoropropane, perfluoro-butane, perfluoro-n-hexane, perfluoro-octane, perfluoro-tributylamine and n-pentane,” J. Chem. Soc. Faraday Trans. 1, Vol. 78, pp. 2251–2257.

    Google Scholar 

  • Megerlin, F. E. and Vingerhoet, P. (1971). “Thermal control of densely packaged microelectronics in dielectric fluids,” Nat’l Electronics Conf., NAE CON’71 Record, pp. 254–259.

    Google Scholar 

  • Monde, M. and Katto, Y. (1978). “Burnout in a high-heat-flux boiling system with an impinging jet,” Int’l J. Heat and Mass Transfer, Vol. 21, pp. 295–305.

    Article  Google Scholar 

  • Morrison, R. A. (1988). “Phase change/immersion cooling,” ASME Technical Paper, 88-WA/EEP-5,presented at ASME 1988 Winter Annual Meeting, Chicago, IL.

    Google Scholar 

  • Mosinski, T. A., Chen, S. J., and Chato, J. C. (1988). “Liquid enhanced cooling of microchips,”Modern Developments in Cooling Technology for Electronic Equipment, W. Aung, ed., Hemisphere Publishing, New York.

    Google Scholar 

  • Mouromtseff, I. E. (1942). “Water and forced air cooling of vacuum tubes, Proc. IRE, Vol. 30, pp. 190–205.

    Article  Google Scholar 

  • Mudawwar, I. A., Incropera, T. A., and Incropera, F. P. (1987). “Boiling heat transfer and critical heat flux in liquid films falling on vertically-mounted heat sources,” Int’l J. Heat and Mass Transfer, Vol. 30, pp. 2083–2095.

    Article  Google Scholar 

  • Mudawwar, I. A., Incropera, T. A., and Incropera, F. P. (1988). “Microelectronic cooling by fluorocarbon liquid films,” in Modern Developments in Cooling Technology for Electronic Equipment, W. Aung, ed., Hemisphere Publishing, New York.

    Google Scholar 

  • Mudawwar, I. and Maddox, D. E. (1989). “Critical heat flux in subcooled flow boiling of fluorocarbon liquid on a simulated electronic chip in a vertical rectangular channel,” Int’l J. Heat and Mass Transfer, Vol. 32, pp. 379–3994.

    Article  Google Scholar 

  • Murphy, R. W. and Bergles, A. E. (1972). “Subcooled flow boiling of fluorocarbons, hysteresis and dissolved gas effects on heat transfer,” Proc. 1972 Heat Transfer and Fluid Mechanics Inst., Stanford Univ. Press, Stanford, CA, pp. 400–416.

    Google Scholar 

  • Nakayama, W. and Bergles, A. E. (1988). “Cooling electronic equipment: Past, present, and future,” keynote lecture at the Int’l Symp. on Heat Transfer in Electronic and Microelectronic Equipment, Dubrovnik, Yugoslavia, Aug 1988.

    Google Scholar 

  • Nakayama, W., Daikoku, T., and Nakajima, T. (1982). “Enhancement of boiling and evaporation on structured surface with gravity driven film flow of R-11,” Heat Transfer 1982, Proc. 7th Int’l Heat Transfer Conf, Vol. 4, Hemisphere Publishing, Wash DC, pp. 409–414.

    Google Scholar 

  • Nakayama, W., Nakajima, T., and Hirasawa, S. (1984). “Heat sink studs having enhanced boiling surfaces for cooling microelectronic components,” ASME Paper No. 84-WA/HT-89, ASME, New York.

    Google Scholar 

  • Nakoryakov, V. E., and Kabov, O. A., editors (1993). “Evaporative cooling systems of electronic equipment,” proceedings of a seminar held in August 1992, Siberian Branch of the USSR Academy of Sciences, Novosibirsk, VSSR.

    Google Scholar 

  • Nonn, T., Dagan, Z., and Jiji, L. M. (1988). “Boiling jet impingement cooling of simulated microelectronic heat sources,” ASME Paper 88-WA/EEP-3, New York.

    Google Scholar 

  • Oktay, S. (1982). “Departure from natural convection (DNC) in low-temperature boiling heat transfer encountered in cooling microelectronic LSI devices,” Heat Transfer 1982, Proc. 7th Int’l Heat Transfer Conf., Vol. 4, Hemisphere Publishing, Wash DC, pp. 113–118, also, Heat Transfer Eng., Vol. 9, No. 3, pp. 93–100 (1988).

    Google Scholar 

  • Oktay, S. and Kammerer, H. C. (1982). “A conduction cooled module for high performance LSI devices,” IBM J. Res. Dev., Vol. 26, No. 1, pp. 55–56.

    Article  Google Scholar 

  • Oktay, S. and Schmeckenbecher, A. F. (1974). “Preparation and performance of dendritic heat sinks,” J. Electrochemical Soc., Vol. 21, pp. 912–918.

    Article  Google Scholar 

  • Ornatskii, A. P., and Vinyarskii, L. S. (1965).“Heat transfer crisis in a forced flow of underheated water in small-bore tubes,” High Temperature, Vol. 3, No. 3, pp. 44– 451.

    Google Scholar 

  • Park, K-A. and Bergles, A. E. (1986).“Boiling heat transfer characteristics of simulated microelectronic chips with detachable heat sinks,” Heat Transfer 1986, Proc. 8th Int’l Heat Transfer Conf, Vol. 4, Hemisphere Publishing, Wash DC, pp. 2099–2104.

    Google Scholar 

  • Park, K-A. and Bergles, A. E. (1987). “Natural convection heat transfer characteristics of simulated microelectronic chips,” J. Heat Transfer, Vol. 109, pp. 90–96.

    Article  Google Scholar 

  • Park, K-A. and Bergles, A. E. (1988a). “Heat transfer characteristics of simulated microelectronic chips heat sinks,” in Cooling Technology for Electronic Equipment, Hemisphere Publishing, Wash DC, pp. 353–367.

    Google Scholar 

  • Park, K-A. and Bergles, A. E. (1988b). “Ultrasonic enhancement of saturated and subcooled pool boiling,” Int’l J. Heat and Mass Transfer, Vol. 31, pp. 664–667.

    Article  Google Scholar 

  • Park, K-A. and Bergles, A. E. (1988c). “Effects of size of simulated microelectronic chips on boiling and critical heat flux,” J. Heat Transfer, Vol. 110, pp. 728–734.

    Article  Google Scholar 

  • Phillips, R. J., Glicksman, L., and Larson, R. (1987).“Forced convection, liquid-cooled, microchannel heat sinks for high-power-density microelectronics,” Proc. Int’l Symp. on Cooling Technology for Electronic Equipment, Hawaii, pp. 227–248.

    Google Scholar 

  • Ramadhyani, S. and Incropera, F. P. (1988).“Forced convection cooling of discrete heat sources with and without surface enhancement,” in Modern Developments in Cooling Technology for Electronic Equipment, W. Aung, ed., Hemisphere Publishing, New York, pp. 249–264.

    Google Scholar 

  • Reeber, M. D. and Frieser, R. G. (1980). “Heat transfer of modified silicon surface,” IEEE Trans., Vol. CHMT-3, pp. 387–391.

    Google Scholar 

  • Reichel, H. (1986). “Silicon substrates for chip interconnection,” Hybrid Circuits, Vol. 11, pp. 5–7.

    Google Scholar 

  • Rohsenow, W. M. (1952). “A method for correlating heat transfer data for surface boiling of liquids,” Trans. ASME.

    Google Scholar 

  • Rohsenow, W. M. (1985). In Handbook of Heat Transfer, 2nd Ed., W. M. Rohsenow, J. P. Hartnett, and E. G. Ganic, eds., McGraw-Hill Book Co., New York.

    Google Scholar 

  • Sabag, A. (1984). “Boiling and condensation in a module used for cooling electronic components,” MS thesis, Dept. of Mech. Eng., Ben Gurion Univ., Israel.

    Google Scholar 

  • Samant, K. R. and Simon, T. W. (1986). “Heat transfer from a small, high-heat-flux patch to a subcooled turbulent flow,” ASME Paper No. 86-HT-22.

    Google Scholar 

  • Saylor, J. R., Bar-Cohen, A., Lee, T-Y., Simon, T. W., Tong, W., and Wu, P-S. (1988). “Fluid selection and property effects in single and two-phase immersion cooling,” IEEE CHMT Trans., Vol. 11, No. 4, Dec, pp. 557–565.

    Google Scholar 

  • Saylor, J. R., Simon, T. W., and Bar-Cohen, A. (1989).“The effect of a dimensionless lengths scale on the critical heat flux in saturated, pool boiling,” ASME, Vol. HTD 108, pp. 71–80.

    Google Scholar 

  • Schwartz, A. M. and Tegada, S. B. (1972). “Studies of dynamic contact angle on solids,” J. Colloid Interface “Science, Vol. 38, pp. 359–375.

    Article  Google Scholar 

  • Simons, R. E. (1987). “Direct liquid immersion cooling: Past, present, future,” Proc. Int’l Symp. on Microelectronics, Internal Society for Hybrid Microelectronics, pp. 186–197.

    Google Scholar 

  • Simons, R. E. and Seely, J. H. (1969). “A survey of vapor phase cooling systems,” Electronic Design, Vol. 17, pp. 53–56.

    Google Scholar 

  • Skripov, V. P. and Firsov, V. V. (1977).“Surface tension of perfluoroalkanes,” J. Phys. Chem., Vol. 42, No. 5, pp. 851–863.

    Google Scholar 

  • Stephan, K. and Abdelsalam, S. (1980). “Heat transfer correlations for natural convection boiling,” Int’l J. Heat and Mass Transfer, Vol. 23, pp. 73–87.

    Article  Google Scholar 

  • Tong, W., Bar-Cohen, A., and Simon, T. W. (1990).“Contact angle effects on boiling incipience of highly wetting liquids,” accepted for publication in Int’l. Heat and Mass Transfer.

    Google Scholar 

  • Touloukian, Y. S. and Makita, T. (1970).Thermophysical Properties of Matter, Vol.6, IFI/Plenum, New York, p. 224.

    Google Scholar 

  • Touloukian, Y. S., Saxena, S. C, and Hestermans, P. (1975). Thermophysical Properaties of Matter, Vol. 11, IFI/Plenum, New York, p. 225.

    Google Scholar 

  • Tuckerman, D. and Pease, F. (1981).“High performance heat sinking for VLSI,” IEEE Electron Device Letters, Vol. EDL-2, No. 5, pp. 126–129.

    Article  Google Scholar 

  • Vacca, A., Resnick, D., Frankel, D., Back, R., Kreilich, J., and Carlson, D. (1987).“A cryogenically-cooled CMOS VLSI supercomputer,”VLSI Systems Design, pp. 80–88.

    Google Scholar 

  • Veda, T., Inoue, M., Nagatome, S. (1981).“Critical heat flux and droplet entrainment rate in boiling of falling liquid films,” Int’l J. Heat and Mass Transfer, Vol. 24, pp. 1257–1266.

    Article  Google Scholar 

  • Watanabe, K. and Okada, M. (1977).“Surface tension of several hologenated hyrdocar bons,” Proc. 7th Symp. on Thermophysical Properties, A. Cezairllyan, ed.

    Google Scholar 

  • Watari, T. and Murano, H. (1985). “Packaging technology for the NEC SX supercomputer,” Proc. 1985 IEEE Electronic Components Conf, pp. 192–198.

    Google Scholar 

  • Westwater, W., Zinn, J. C., and Brodbeck, K. J. (1989).“Correlations of pool boiling curves for the homologous group: Freons,” ASME J. of Heat Transfer, Vol. 111, pp. 204–206.

    Article  Google Scholar 

  • Willingham, T. C, and Mudawar, I. (1992).“Forced convection boiling and critical heat flux from a Mnear array of discrete heat sources,” Int’l J. Heat and Mass Transfer, Vol. 35, pp. 2879–2890.

    Article  Google Scholar 

  • Yamamoto, H., Udagawa, Y., and Okada, T. (1986).“Cooling and packaging technology for the FACOM M-780,” Fujitsu, Vol. 37, pp. 124–134.

    Google Scholar 

  • Yao, S. C., Deb, S., and Hammouda, N. (1989). “Impacting spray boillng for thermal control of electronic systems,” Heat Transfer in Electronics1989, ASME, Vol. HTD-111, pp. 129–134.

    Google Scholar 

  • Yang, K. T., Novotny, J. L., and Cheng, Y. S. (1972).“Laminar free convection from a nonisothermai plate immersed in a temperature stratified medium,” Int’l J. Heat & Mass Transfer, Vol. 15, pp. 1097–1109.

    Article  MATH  Google Scholar 

  • Yang, N. S. and Shen, Z. 0. (1988).“The mechanism of heat transfer augmentation by means of gas impingement on small heated device in liquid coolant baths,” reprints of 2nd Int’l Symp.on Heat Transfer, Vol.1, Tsinghea Univ., Beijing, pp.China, 619–625.

    Google Scholar 

  • Yokouchi, K., Kamehara, N., and Niwa, K. (1987).“Immersion cooling for high density packaging,’ Proc. 37th IEEE Electronic Components Conf., pp. 545–549.

    Google Scholar 

  • You, S. M., Simon, T. W., and Bar-Cohen, A. (1990).“Experimental investigation of nucleate boiling incipience with highly wetting dielectric fluid (R113),” accepted for publication in Int’l J. Heat and Mass Transfer.

    Google Scholar 

  • Zitz, J. A. (1990). “Immersion cooling of a multichip module by pool boiling of FC-86,” M.S. thesis in Mechanical Engineering, Rensselaer Polytechnic Institute, Troy, NY.

    Google Scholar 

  • Zuber, N. (1958). “On the stability of boiling heat transfer,” Trans. ASME, Vol. 80, pp. 711–720.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bergles, A.E., Bar-Cohen, A. (1994). Immersion Cooling of Digital Computers. In: Kakaç, S., Yüncü, H., Hijikata, K. (eds) Cooling of Electronic Systems. NATO ASI Series, vol 258. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1090-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1090-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4476-9

  • Online ISBN: 978-94-011-1090-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics