Skip to main content

Model simulations of Cretaceous climates: the role of geography and carbon dioxide

  • Chapter
Palaeoclimates and their Modelling

Summary

A general circulation model (GENESIS) with seasonally varying solar insolation and a mixed layer ocean is applied to assess the role of continental geometry and increased levels of carbon dioxide to explain the warmth of the Cretaceous period. Model experiments suggest that the role of geography is negligible, in contrast to early model studies with mean annual solar insolation and a simple energy balance ocean. Higher atmospheric carbon dioxide (4 times present) resulted in a 5.5°G globally averaged surface temperature increase, close to the lower limit required to explain the geologic record. Mid-Cretaceous carbon dioxide concentrations of 4–6 times the present day concentrations are a reasonable explanation of Cretaceous warmth if the GENESIS model provides an accurate estimate of climate sensitivity to geography and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthes, R.A. 1977 A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev. 105, 921–941.

    Google Scholar 

  • Barron, E J. 1983 A warm, equable Cretaceous: the nature of the problem. Earth Sci. Rev. 19, 305–338.

    Article  Google Scholar 

  • Barron, E.J. 1987 Eocene equator-to-pole surface ocean temperatures: a significant climate problem. Paleoceano-graphy 2, 729–740.

    Article  Google Scholar 

  • Barron, EJ. & Washington, W.M. 1984 The role of geographic variables in explaining paleoclimates: results from Cretaceous climate model sensitivity studies. J. geophys. Res. 89(D1), 1267–1279.

    Article  Google Scholar 

  • Barron, EJ. & Washington, W.M. 1985 Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. In The carbon cycle and atmospheric CO2. natural variations Archean to present, Geophys. Monogr. Ser. (ed. E. T. Sund-quist & W. S. Broecker), pp. 546–553. Washington, D.C.: AGU.

    Chapter  Google Scholar 

  • Barron, E.J., Peterson, W.H., Pollard, D. & Thompson, S. 1993 Past climate and the role of ocean heat transport: model simulations for the Cretaceous. Paleoceanography (In the press.)

    Google Scholar 

  • Beaty, C. 1978 The causes of glaciation. Am. Sci. 66, 452–459.

    Google Scholar 

  • Berner, R.A. 1991 A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376.

    Article  Google Scholar 

  • Berner, R.A., Lasaga, A.C. & Garreis, R.M. 1983 The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the last 100 million years. Am. J. Sci. 283, 641–683.

    Article  Google Scholar 

  • Budyko, M. & Ronov, A. 1979 Chemical evolution of the atmosphere in the Phanerozoic. Geochem. Int. 16, 1–9.

    Google Scholar 

  • Cao, Hong Xing, Mitchell, J.F.B. & Lauery, J.R. 1992 Simulated diurnal range and variability of surface temperature in a global climate model for present and doubled CO2 climates. J. Climate 5, 920–943.

    Article  Google Scholar 

  • Carissimo, B.C., Oort, A.H. & Vonder Haar, T.H. 1985 Estimating the meridional energy transport in the atmosphere and ocean. J. phys. Oceano. 15, 82–91.

    Article  Google Scholar 

  • Cerling, T.E. 1991 Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291, 377–400.

    Article  Google Scholar 

  • Covey, C. & Thompson, S.L. 1989 Testing the effects of ocean heat transport on climate. Global Planet. Change 1(4), 331–341.

    Article  Google Scholar 

  • Donn, W. & Shaw, D. 1977 Model of climate evolution based on continental drift and polar wandering. Geol. Soc. Am. Bull. 88, 390–396.

    Article  Google Scholar 

  • Fischer, A.G. 1982 Long-term climatic oscillations recorded in stratigraphy. In Climate in Earth history (ed. W. H. Berger & J. C. Crowell), pp. 97–104. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Freeman, K.H. & Hayes, J.M. 1992 Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glo. Biogeo. Cyc. 6(2), 185–198.

    Article  Google Scholar 

  • Harvey, L.D.D. 1988 Development of a sea ice model for use in zonally averaged energy balance climate models. J. Climate 1, 1221–1238.

    Article  Google Scholar 

  • IPCC 1990 Climate change: the IPCC scientific assessment (ed. J. T. Hough ton, G. J. Jenkins & J. J. Ephraums), Cambridge University Press.

    Google Scholar 

  • Kreitzberg, C.W. & Perkey, D.J. 1976 Release of potential instability: Part I, a sequential plume model within a hydrostatic primitive equation model. J. atmos. Sci. 33, 456–475.

    Article  Google Scholar 

  • Pollard, D. & Thompson, S.L. 1992a Description of a land-surface-transfer model (LSX) as part of a global climate model. (In preparation.)

    Google Scholar 

  • Pollard, D. & Thompson, S.L. 1992b Present climate simulation and CO2 sensitivity using a land-surface-transfer scheme (LSX) in a global climate model. (In preparation.)

    Google Scholar 

  • Rasch, PJ. & Williamson, D.L. 1990 Computational aspects of moisture transport in global models of the atmosphere. Q. Jl R. meteorol. Soc. 116, 1071–1090.

    Article  Google Scholar 

  • Rind, D. & Chandler, M. 1991 Increased ocean heat transport and warmer climate. J. geophys. Res. 96(D4), 7437–7461.

    Article  Google Scholar 

  • Semtner, AJ. 1976 A model for the thermodynamic growth of sea ice in numerical investigations of climate. J.phys. Oceanogr. 6, 379–389.

    Article  Google Scholar 

  • Slingo, A. & Slingo, J.M. 1991 Response of the NCAR Community Climate Model to improvements in the representation of clouds. J. geophys. Res. 96, 5341–5357.

    Article  Google Scholar 

  • Thompson, S.L., Ramanathan, V. & Covey, C. 1987 Atmospheric effects of nuclear war aerosols in general circulation model simulations: influence of smoke optical properties. J. geophys. Res. 92, 10942–10960.

    Article  Google Scholar 

  • Washington, W.M. & Meehl, G.A. 1983 General circulation model experiments on the climatic effects due to a doubling and quadrupling of carbon dioxide concentrations. J. geophys. Res. 88, 6600–6610.

    Article  Google Scholar 

  • Washington, W.M. & Meehl, G.A. 1984 Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model. J. geophys. Res. 89(D6), 9475–9503.

    Article  Google Scholar 

  • Wetherald, R.T. & Manabe, S 1981 Influence of seasonal variation upon the sensitivity of a model climate. J. geophys. Res. 86, 1194–1204.

    Article  Google Scholar 

  • Williamson, D.L. 1990 Semi-Lagrangian moisture transport in the NMC spectral model. Tellus 42a, 413–428.

    Google Scholar 

  • Williamson, D.L. & Rasch, PJ. 1989 Two-dimensional semi-Lagrangian transport with shape-preserving interpolation. Mon. Wea. Rev. 117, 102–129.

    Article  Google Scholar 

  • Gough, D.O. 1977 Theoretical predictions of variations in the solar output. In The solar output and its variation (ed. O. R. White), pp. 451–474. Boulder, Colorado: Colorado Associated University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barron, E.J., Fawcett, P.J., Pollard, D., Thompson, S. (1994). Model simulations of Cretaceous climates: the role of geography and carbon dioxide. In: Allen, J.R.L., Hoskins, B.J., Sellwood, B.W., Spicer, R.A., Valdes, P.J. (eds) Palaeoclimates and their Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1254-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1254-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4546-9

  • Online ISBN: 978-94-011-1254-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics