Skip to main content

The duration of light and photoperiodic responses

  • Chapter
Photomorphogenesis in Plants

Abstract

Exposure to alternating periods of light and darkness is a feature of the environment of most plants and animals. It is hardly surprising, therefore, to find that responses to the timing of these light/dark cycles are a nearly ubiquitous characteristic of life and that many of these responses represent useful adaptations to a fluctuating environment. A large number of biochemical events and several aspects of behaviour (such as ‘activity periods’ in certain animals and’ sleep movements’ in leaves) have been found to occur at a particular time of the day or night. For example, in the unicellular alga, Gonyaulax polyedra, there are two different manifestations of bioluminescence: low-intensity glowing which peaks towards the end of the night and high-intensity flashing which peaks in the middle of the night (Fig. 1c). In order to be able to locate an event at a particular time of day, the organism must possess some kind of timekeeping mechanism and must also be able to discriminate between light and darkness. Thus, daily timekeeping requires both a clock and a photoreceptor. When examined in detail it appears that in most, if not all cases the underlying clock is an endogenous oscillator which has certain characteristic properties in relation to light/dark cycles (Fig. 1). The photoreceptor, in contrast, varies widely between organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Lumsden P.J. (1991) Circadian rhythms and phytochrome. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 351–371.

    Article  CAS  Google Scholar 

  • Vince-Prue D. (1975) Photoperiodism in Plants. McGraw Hill, Maidenhead.

    Google Scholar 

  • Vince-Prue D. (1983) Photomorphogenesis and flowering. In: Encyclopedia of Plant Physiology, New Series, Vol. 16B; Photomorphogenesis, pp. 457–490, Shropshire W. and Mohr H. (eds.) Springer-Verlag, Berlin.

    Google Scholar 

  • Vince-Prue D. and Takimoto A. (1987) Roles of phytochrome in photoperiodic floral induction. In: Phytochrome and Photoregulation in Plants, pp. 259–275, Furuya M. (ed.) Academic Press, Tokyo.

    Google Scholar 

References

  • Bernier G. (1988) The control of floral evocation and morphogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:175–219.

    Article  Google Scholar 

  • Bossen M.E., Kendrick R.E. and Vredenberg W.J. (1990) The involvement of a G-protein in phytochrome-regulated Ca2+-dependent swelling of etiolated wheat protoplasts. Physiol. Plant. 80: 55–62.

    Article  CAS  Google Scholar 

  • Brockmann J., Rieble S., Kazarinova-Fukshansky N., Seyfried M. and Schäfer E. (1987) Phytochrome behaves as a dimer in vivo. Plant Cell Environ. 10:105–111.

    CAS  Google Scholar 

  • Carr-Smith H., Johnson C.B., Plumpton C. and Butcher W.G. (1993) The kinetics of Type I phytochrome in green, light-grown wheat (Triticum aestivum L). Planta (in press).

    Google Scholar 

  • Daan S. (1982) Circadian rhythms in animals and plants. In: Biological Timekeeping, SEB Seminar Series, pp. 11–32, Brady J. (ed.) Cambridge University Press, Cambridge.

    Google Scholar 

  • Deitzer G.F. (1993) Molecular genetics of photoperiodic induction. In: Plant Photoreceptors and Photoperception, Proc. Int. Sympos. British Photobiology Society (in press).

    Google Scholar 

  • Deitzer G.F., Hayes R.G. and Jabben M. (1982) Phase-shift in circadian rhythm of floral promotion by far-red energy in Hordeum vulgare L. Plant Physiol. 69: 597–601.

    Article  PubMed  CAS  Google Scholar 

  • Friedman H, Goldschmidt E.E. and Halevy A.H. (1989) Involvement of calcium in the photoperiodic flower induction process of Pharbitis nil. Plant Physiol. 89: 530–534.

    Article  PubMed  CAS  Google Scholar 

  • Halaban R and Hillman W. (1970) Response of Lemna perpusilla to periodic transfer to distilled water. Plant Physiol. 46: 641–644.

    Article  PubMed  CAS  Google Scholar 

  • Holland R.W.K. and Vince D. (1971) Floral initiation in Lolium temulentum L: the role of phytochrome in the responses to red and far-red light. Planta 98: 232–243.

    Article  CAS  Google Scholar 

  • Jordan B.R., Partis M.D. and Thomas B. (1986) The biology and molecular biology of phytochrome. In: Oxford Surveys of Plant Molecular and Cell Biology Vol. 3, pp. 315-362, Miflin B.J. (ed.) Oxford University Press.

    Google Scholar 

  • Kimpel J.A. and Doss R.P. (1989) Gene expression during floral induction by leaves of Perilla crispa. Flowering Newsletter 7: 20–25.

    Google Scholar 

  • King R.W. and Cumming B.G. (1972) The role of phytochrome in photoperiodic time-measurement and its relation to rhythmic time-keeping in the control of flowering in Chenopodium rubrum L. Planta 108: 39–57.

    Article  Google Scholar 

  • King R.W., Schäfer E., Thomas B. and Vince-Prue D. (1982) Photoperiodism and rhythmic response to light. Plant Cell Environ. 5: 395–404.

    Article  Google Scholar 

  • Knapp P.H., Sawhney S., Grimmett M.M. and Vince-Prue D. (1986) Site of perception of the farred inhibition of flowering in Pharbitis nil Choisy. Plant Cell Physiol. 27:1147–1152.

    Google Scholar 

  • Lang A., Chailakhyan M. Kh. and Frolova I.A. (1977) Promotion and inhibition of flower formation in a day-neutral plant in grafts with a short-day plant and a long-day plant. Proc. Natl. Acad Sci. USA 74: 2412–2416.

    Article  PubMed  CAS  Google Scholar 

  • Lumsden P.J. and Vince-Prue D. (1984) The perception of dusk signals in photoperiod timemeasurement. Physiol. Plant. 60: 427–432.

    Article  Google Scholar 

  • Lumsden P.J, Saji H. and Furuya M. (1987) Action spectra confirm two separate actions of phytochrome in the induction of flowering in Lemna paucicostata 441. Plant Cell Physiol. 28: 1237–1242.

    CAS  Google Scholar 

  • Lumsden P.J., Yamamoto K.T., Nagatani A and Furuya M. (1985) Effect of monoclonal antibodies on the in vitro Pfr dark reversion of pea phytochrome. Plant Cell Physiol. 26:1313–1322.

    CAS  Google Scholar 

  • Morse M.J., Crain R.C. and Satter R.L. (1987) Light-stimulated inositolphospholipid turnover in Samanea saman leaf pulvini. Proc. Natl. Acad. Sci. USA 84: 7075–7078.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill S.D. (1989) Molecular analysis of floral induction in Pharbitis nil. In: Plant Reproduction: from Floral Induction to Pollination, pp. 19-28, Lord E. and Bernier G. (eds.) Am. Soc. Plant Physiol. Symposium Series, Vol. 1.

    Google Scholar 

  • O’Neill S.D. (1992) The photoperiodic control of flowering: progress toward understanding the mechanism of induction. Photochem. Photobiol. 56: 789–801.

    Article  CAS  Google Scholar 

  • Oota Y. (1983) Physiological structure of the critical photoperiod of Lemna paucicostata 6746. Plant Cell Physiol. 24:1503–1510.

    CAS  Google Scholar 

  • Oota Y. and Nakashima H. (1978) Photoperiodic flowering in Lemna gibba G3; time measurement. Bot. Mag. Tokyo, Special Issue 1:177–198.

    CAS  Google Scholar 

  • Papenfuss H.D. and Salisbury F.B. (1967) Properties of clock re-setting in flowering of Xanthium. Plant Physiol. 42:1562–1568.

    Article  PubMed  CAS  Google Scholar 

  • Pratt L.H., Cordonnier M-M., Wang Y-C., Stewart SJ. and Moyer M. (1991) Evidence for three phytochromes in Avena. In: Phytochrome Properties and Biological Action, pp. 39-55, Thomas B. and Johnson C.B. (eds.) NATO ASI Series H: Cell Biology, Vol 50.

    Google Scholar 

  • Rombach J. (1986) Phytochrome in Norflurazon-treated seedlings of Pharbis nil. Physiol. Plant. 68: 231–237.

    Article  CAS  Google Scholar 

  • Saji H., Furuya M. and Takimoto A. (1984) Role of the photoperiod preceding a flower-inductive dark period in dark-grown seedlings ofPharbitis nil Choisy. Plant Cell Physiol. 25: 715–720.

    Google Scholar 

  • Saji H., Vince-Prue D. and Furuya M. (1983) Studies on the photoreceptors for the promotion and inhibition of flowering in dark-grown seedlings of Pharbitis nil Choisy. Plant Cell Physiol. 25: 1183–1189.

    Google Scholar 

  • Salisbury F.B. (1981) Twilight effect: initiating dark time-measurement in photoperiodism of Xanthium. Plant Physiol. 67:1230–1238.

    Article  PubMed  CAS  Google Scholar 

  • Takimoto A. (1967) Studies on the light affecting the initiation of endogenous rhythms concerned with photoperiodic responses in Pharbitis nil. Bot. Mag. Tokyo 80: 241–247.

    Google Scholar 

  • Takimoto A. and Saji H. (1984) A role of phytochrome in photoperiodic induction: two phytochrome-pool theory. Physiol. Plant. 61: 675–682.

    Article  CAS  Google Scholar 

  • Thomas B. (1991) Phytochrome and photoperiodic induction. Physiol. Plant. 81: 571–577.

    Article  CAS  Google Scholar 

  • Thomas B. and Vince-Prue D. (1987) Phytochrome and photoperiodic induction in short-day and long-day plants. In: Models in Plant Physiology and Biochemistry Vol. 11, pp. 121–125, Newman D.W. and Wilson K.G. (eds.) CRC Press, Boca Raton.

    Google Scholar 

  • Tretyn A., Cymerski M., Czaplewska J., Lukasiewicz H., Pawlak A. and Kopcewicz J. (1990) Calcium and photoperiodic flower induction in Pharbitis nil. Physiol. Plant. 80: 388–392.

    Article  CAS  Google Scholar 

  • Vince-Prue D. and Lumsden P.J. (1987) Inductive events in the leaves: time-measurement and photoperception in the short-day plant, Pharbitis nil. In: Manipulation of Flowering, pp. 255–268, Atherton J.G. (ed.) Butterworths, London.

    Google Scholar 

  • Vince-Prue D., King R.W. and Quail P.H. (1978) Light requirement, phytochrome and photoperiodic induction of flowering of Pharbitis nil Chois. II. A critical examination of spectrophotometric assays of phytochrome transformations. Planta 141:9–14.

    Article  CAS  Google Scholar 

  • Warm E. (1984) Changes in the composition of in vitro translated leaf mRNA caused by photoperiodic flower induction of Hyoscyamus niger. Physiol Plant 61: 344–350.

    Article  CAS  Google Scholar 

  • Whitelam G.C. (1993) The phytochrome molecules. In: Plant Photoreceptors and Photoperception, Proc. Int. Sympos. British Photobiology Society (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vince-Prue, D. (1994). The duration of light and photoperiodic responses. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics