Skip to main content

Photomorphogenic mutants of higher plants

  • Chapter
Photomorphogenesis in Plants

Abstract

The regulation of plant development by light is mediated by several different photoreceptors. After photoperception, a transduction chain relays the signal to the terminal response(s). The complexity of photomorphogenesis is due to the different photoreceptors and the multiple steps of the transduction chain(s), which may involve such aspects as changes in gene expression, interaction with plant hormones, membrane changes etc., which remain largely unknown. The components of these transduction chains can either be different or similar. A further complication arises because of the co-action of several photoreceptive systems regulating the same process (Chapter 6) or because of the multiple effects induced by a single photoreceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Chory J. (1993) Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends in Genet. Vol. 9, 5:167–172.

    Article  Google Scholar 

  • Kendrick R.E. and Nagatani A. (1991) Phytochrome mutants. Plant J. 1:133–139.

    Article  Google Scholar 

References

  • Adamse P., Jaspers P.A.P.M., Kendrick R.E. and Koornneef M. (1987) Photomorphogenetic responses of a long hypocotyl mutant of Cucumis sativus L. J. Plant. Physiol. 127: 481–491.

    Article  Google Scholar 

  • Adamse P., Jaspers P.A.P.M., Bakker J.A., Wesselius J.C., Heeringa G.H., Kendrick R.E. and Koornneef M. (1988a) Photophysiology of a tomato mutant deficient in labile phytochrome. J. Plant Physiol. 133: 436–440.

    Article  Google Scholar 

  • Adamse P., Kendrick R.E. and Koornneef M. (1988b) Photomorphogenetic mutants of higher plants. Photochem. Photobiol 48: 833–841.

    Article  CAS  Google Scholar 

  • Adamse P., Peters J.L., Jaspers P.A.P.M., van Tuinen A. Koornneef M. and Kendrick R.E. (1989) Photocontrol of anthocyanin synthesis in tomato seedlings: a genetic approach. Photochem. Photobiol. 50:107–111.

    Article  CAS  Google Scholar 

  • Ahmad M., Lin C., Chan J.W.Y. and Cashmore A.R. (1993) A mutant of Arabidopsis thaliana defective in blue light responses: the sequence of the HY4 gene is indicative of a blue light photoreceptor. Book of Abstracts — European Symposium Photomorphogenesis in Plants, p. 7, Pisa.

    Google Scholar 

  • Ballaré C.L., Scopel A.L., Radosevich S.R. and Kendrick R.E.(1992) Phytochrome-mediated phototropism in de-etiolated seedlings. Plant Physiol. 100:170–177.

    Article  PubMed  Google Scholar 

  • Beall F.D., Morgan P.W., Mander L.N., Miller F.R. and Babb K.H. (1991) Genetic regulation of development in sorghum. V. The ma 3R allele results in gibberellin enrichment. Plant Physiol. 94:116–125.

    Article  Google Scholar 

  • Behringer F.J., Davies P.J. and Reid J.B. (1992) Phytochrome regulation of stem growth and indole-3-acetic levels in the lv and Lv genotypes of Pisum. Photochem. Photobiol. 56: 677–684.

    Article  CAS  Google Scholar 

  • Boylan M.T. and Quail P.H. (1989) Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell 1: 765–773.

    PubMed  CAS  Google Scholar 

  • Boylan M.T. and Quail P.H. (1991) Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc. Natl. Acad Sci. USA 88:10806–10810.

    Article  PubMed  CAS  Google Scholar 

  • Childs K.L., Pratt L.H. and Morgan P.W. (1991) Genetic regulation of development in Sorghum bicolor: VI. The allele results in abnormal phytochrome physiology. Plant Physiol. 97: 14–719.

    Article  Google Scholar 

  • Chory J. (1991) Light signals in leaf and chloroplast development: photoreceptors and downstream responses in search of a transduction pathway. New Biologist 3: 538–548.

    PubMed  CAS  Google Scholar 

  • Chory J. (1992) A genetic model for light-regulated seedling development in Arabidopsis. Development 115: 337–354.

    CAS  Google Scholar 

  • Chory J., Peto C.A., Ashbaugh M., Saganich R., Pratt L. and Ausubel F. (1989a) Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1: 867–880.

    PubMed  CAS  Google Scholar 

  • Chory J., Peto C., Feinbaum R., Pratt L. and Ausubel F. (1989b) Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58: 991–999.

    Article  PubMed  CAS  Google Scholar 

  • Chory J., Nagpal P. and Peto C.A. (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development inArabidopsis. Plant Cell 3: 445–459.

    PubMed  CAS  Google Scholar 

  • Chory J., Aguilar N. and Peto C. (1991) The phenotype of Arabidopsis det1 mutants suggests a role for cytokinins in greening. In: Molecular Biology of Plant Development, Symp. Soc. Exp. Biol. XLV, pp. 21–29, Jenkins G.I. and Schuch W. (eds.) The Company of Biologists Ltd, Cambridge.

    Google Scholar 

  • Cone J.W. and Kendrick R.E. (1985) Fluence-response curves and action spectra for promotion and inhibition of seed germination in wildtype and long-hypocotyl mutants of Arabidopsis thaliana L. Planta 163: 43–54.

    Article  CAS  Google Scholar 

  • Deng X.-W. and Quail P.H. (1992) Genetic and phenotypic characterization of cop1 mutants of Arabidopsis thaliana. Plant J. 2: 83–95.

    Article  CAS  Google Scholar 

  • Deng X.-W., Caspar T and Quail P.H. (1991) Copl: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Develop. 5: 1172–1182.

    Article  PubMed  CAS  Google Scholar 

  • Deng X.-W., Matsui M., Wei N., Wagner D., Chu A.M., Feldmann K.A. and Quail P.H. (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gb homologous domain. Cell 71:1–20.

    Article  Google Scholar 

  • Devlin P.F., Rood S.B., Somers D.E., Quail P.H. and Whitelam G.C. (1992) Photophysiology of the elongated internode (ein) mutant of Brassica rapa. Plant Physiol. 100:1442–1447.

    Article  PubMed  CAS  Google Scholar 

  • Feldmann K.A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum (1). Plant J. 1: 71–82.

    Article  CAS  Google Scholar 

  • Frances S., White M.J., Edgerton M.D., Jones A.M., Elliot R.C. and Thompson W.F. (1992) Initial characterization of a pea mutant with light-independent photomorphogenesis. Plant Cell 4: 1519–1530.

    PubMed  CAS  Google Scholar 

  • Furuya M., Ito N., Tomizawa K. and Schäfer E. (1991) A stable phytochrome pool regulates the expression of the phytochrome I gene in pea seedlings. Planta 183: 218–221.

    Article  CAS  Google Scholar 

  • Georghiou K. and Kendrick R.E. (1991) The germination characteristics of phytochrome-deficient aurea mutant tomato seeds. Physiol. Plant. 82:127–133.

    Article  CAS  Google Scholar 

  • Goto N., Kumagai T.K and Koornneef M. (1991) Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol. Plant. 83: 209–215.

    Article  Google Scholar 

  • Hartmann K.M. (1966) A general hypothesis to interpret ‘high energy phenomena’ of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5: 349–366.

    Article  CAS  Google Scholar 

  • Hayes G.R. and Klein W.H. (1974) Spectral quality influence of ligth during development of Arabidopsis thaliana plants in regulating seed germination. Plant and Cell Physiol 15: 643–653.

    Google Scholar 

  • Jenkins G.I., Jackson J.A., Shaw M.J. and Urwin N.A.R. (1993) A genetic approach to understanding responses to UV-A/Blue light. In: Plant Photoreceptors and Photoperception, Holmes M.G. (ed.), British Photobiology Society, in press.

    Google Scholar 

  • Kay S.A., Nagatani A., Keith B., Deak M., Furuya M. and Chua N.-H. (1989) Rice phytochrome is biologically active in transgenic tobacco. Plant Cell 1: 775–782.

    PubMed  CAS  Google Scholar 

  • Keller J.M., Shanklin J., Vierstra R.D. and Hershey H.P. (1989) Expression of a functional monocotyledonous phytochrome in transgenic tobacco. EMBO J. 8:1005–1012.

    PubMed  CAS  Google Scholar 

  • Khurana J.P. and Poff K.L. (1989) Mutants of Arabidopsis thaliana with altered phototropism. Planta 178: 400–406.

    Article  PubMed  CAS  Google Scholar 

  • Konjevic R., Khurana J.P. and Poff K.L. (1992) Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana. Photochem. Photobiol. 55: 789–792.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M., Rolff E. and Spruit C.J.P. (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) HEYNH. Z. Pflanzenphysiol. 100:147–160.

    Google Scholar 

  • Koornneef M., Cone J.W., Dekens R.G., O’Herne-Robers E.G., Spruit C.J.P. and Kendrick R.E. (1985) Photomorphogenic responses of long hypocotyl mutants of tomato. J. Plant Physiol. 120:153–165.

    Article  CAS  Google Scholar 

  • Koornneef M., Hanhart C.J. and van der Veen J.H. (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Kraepiel Y., Jullien M., Caboche M. and Miginiac E. (1992) Etiolated mutants of Nicotiana plumbaginifolia. J. Exp. Bot. 43: 23.

    Google Scholar 

  • Lipucci di Paola M., Collina Grenci F., Caltavuturo L., Tognoni F. and Lercari B. (1988) A phytochrome mutant from tissue culture of tomato. Adv. Hort. Sci. 2: 30–32.

    Google Scholar 

  • Liscum E. and Hangarter R.P. (1991) Arabidopsis mutants lacking blue light-dependent inhibition of hypocotyl elongation. Plant Cell 3: 685–694.

    PubMed  Google Scholar 

  • Liscum E., Young J.C., Poff K.L. and Hangarter R.P. (1992) Genetic separation of phototropism and blue light inhibition of stem elongation. Plant Physiol. 100: 267–271.

    Article  PubMed  CAS  Google Scholar 

  • López-Juez, E., Nagatani A., Buurmeijer W.F., Peters J.L., Kendrick R.E. and Wesselius J.C. (1990b) Response of light-grown wild-type and aurea-mutant tomato plants to end-of-day far-red light. J. Photochem. Photobiol. B: Biology 4: 391–405.

    Article  Google Scholar 

  • López-Juez E., Nagatani A., Tomizawa K.-I., Deak M., Kern R., Kendrick R.E. and Furuya M. (1992) The cucumber long hypocotyl mutant lacks a light-stable PHYB-like phytochrome. Plant Cell 4: 241–251.

    PubMed  Google Scholar 

  • McCormac A.C., Cherry J.R., Hershey H.P., Vierstra R.D. and Smith H. (1991) Photoresponses of transgenic tobacco plants expressing an oat phytochrome gene. Planta 185:162–170.

    Article  CAS  Google Scholar 

  • McCormac A, Whitelam G and Smith H. (1992) Light-grown plants of transgenic tobacco expressing an introduced oat phytochrome A gene under the control of a constitutive viral promoter exhibit persistent growth inhibition by far-red light. Planta 188:173–181.

    Article  CAS  Google Scholar 

  • McCullough, J.M. and Shropshire W. (1970) Physiological predetermination of germination responses in Arabidopsis thaliana (L) Heynh. Plant Cell Physiol. 11: 139–148.

    Google Scholar 

  • Murfet IC (1985) Pisum sativum L. In: Handbook of Flowering IV, pp. 97–126, Halevy A.H. (ed) CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Nagatani A., Reid J.B., Ross J.J., Dunnewijk A. and Furuya M. (1990) Internode length in Pisum. The response to light quality, and phytochrome type I and II levels in Iv plants. J. Plant Physiol. 135: 667–674.

    Article  CAS  Google Scholar 

  • Nagatani A., Chory J. and Furuya M. (1991a) Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant CellPhysiol. 32:1119–1122.

    CAS  Google Scholar 

  • Nagatani, A., Kay S.A., Deak M., Chua N.-H. and Furuya M. (1991b) Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc. Natl. Acad. Sci. USA 88: 5207–5211.

    Article  PubMed  CAS  Google Scholar 

  • Nagatani A, Reed J.W. and Chory J. (1993) Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol. in press.

    Google Scholar 

  • Oelmüller R. and Kendrick R.E. (1991) Blue light is required for survival of the tomato phytochrome-deficient aurea mutant and the expression of four nuclear genes coding for plastidic proteins. Plant Mol. Biol. 16: 293–299.

    Article  PubMed  Google Scholar 

  • Oelmüller, R., Kendrick R.E. and Briggs W.R. (1989) Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea-mutant of tomato. Plant Mol. Biol. 13: 223–232.

    Article  PubMed  Google Scholar 

  • Owen M., Gancecha A., Cockburn W. and Whitelam G.C. (1992) Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Bio/Technology 10: 790–794.

    Article  PubMed  CAS  Google Scholar 

  • Parks B.M. and Quail P.H. (1991) Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3:1177–1186.

    PubMed  CAS  Google Scholar 

  • Parks B.M. and Quail P.H. (1993) hy8 a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5: 39–48.

    PubMed  CAS  Google Scholar 

  • Parks B.M., Jones A.M., Adamse P., Koornneef M., Kendrick R.E. and Quail P.H. (1987) The aurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome. Plant Mol. Biol. 9: 97–107.

    Article  CAS  Google Scholar 

  • Parks B.M., Shanklin J., Koornneef M., Kendrick R.E. and Quail P.H. (1989) Immunochemically detectable phytochrome is present at normal levels but is photochemically nonfunctional in the hy 1 and hy 2 long hypocotyl mutants of Arabidopsis. Plant Mol. Biol. 12: 425–437.

    Article  CAS  Google Scholar 

  • Peters J.L., van Tuinen A., Adamse P., Kendrick R.E. and Koornneef M. (1989) High pigment mutants of tomato exhibit high sensitivity for phytochrome action. J. Plant Physiol. 134: 661–666.

    Article  CAS  Google Scholar 

  • Peters J.L., Wesselius J.C., Georghiou K.C., Kendrick R.E., van Tuinen A. and Koornneef M. (1991) The physiology of photomorphogenetic tomato mutants. In: Phytochrome Properties and Biological Action. NATO ASI series H: Cell Biology, Vol. 50, pp. 237–247, Thomas B. and Johnson C.B. (eds.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Peters J.L., Schreuder M.E.L., Verduin S.J.W. and Kendrick R.E. (1992) Physiological characterization of a high pigment mutant of tomato. Photochem. Photobiol. 56: 75–82.

    Article  CAS  Google Scholar 

  • Quail P.H. (1991) Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu. Rev. Genet. 25: 389–409.

    Article  PubMed  CAS  Google Scholar 

  • Reed J.W., Nagpal P., Poole D.S., Furuya M. and Chory J. (1993) Mutations in the gene for red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157.

    PubMed  CAS  Google Scholar 

  • Reid J.B. and Ross J. J. (1988) Internode length in Pisum. A new gene, /v, conferring an enhanced response to gibberellin Ar Physiol Plant. 72: 595–604.

    CAS  Google Scholar 

  • Reymond P., Short T.W., Briggs W.R. and Poff K.L. (1992) Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 89: 4718–4721.

    Article  PubMed  CAS  Google Scholar 

  • Rood S.B., Zonewich K.P. and Bray D. (1990) Growth and development of Brassica genotypes differing in endogenous gibberellin content. II Gibberellin content, growth analysis and cell size. Physiol Plant. 79: 679–685.

    Article  PubMed  CAS  Google Scholar 

  • Shannon F., White M.J., Edgerton M.D., Jones A.M., Elliot R.C. and Thompson W.F. (1992) Initial characterization of a pea mutant with light-independent photomorphogenesis. Plant Cell 4:1519–1530.

    Google Scholar 

  • Sharrock R.A. and Quail P.H. (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Development 3:1745–1757.

    Article  PubMed  CAS  Google Scholar 

  • Sharrock R.A., Parks B.M., Koornneef M. and Quail P.H. (1988) Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Mol. Gen. Genet. 213: 9–14.

    Article  CAS  Google Scholar 

  • Somers D.E., Sharrock R.A., Tepperman J.M., and Quail P.H. (1991) The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. Plant Cell 3: 1263–1274.

    PubMed  CAS  Google Scholar 

  • Spruit C.J.P., van der Boom A. and Koornneef M. (1980) Light induced germination and phytochrome content of seeds of some mutants of Arabidopsis. Arabid. Inf. Serv. 17:137–141.

    Google Scholar 

  • Wagner D., Tepperman J.M. and Quail P.H. (1991) Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis. Plant Cell 3:1275–1288.

    PubMed  CAS  Google Scholar 

  • Wei N. and Deng X.W. (1992) Cop9: a new genetic locus involved in light-regulated development and gene expression in Arabidopsis. Plant Cell 4:1507–1518.

    PubMed  CAS  Google Scholar 

  • Weiler J.L. and Reid J.B. (1993) Photoperiodism and photocontrol of stem elongation in two photomorphogenic mutants of Pisum sativum L. Planta 189:15–23.

    Google Scholar 

  • Whitelam G.C. (1993) The phytochrome molecules. In: Plant Photoreceptors and Photoperception. Holmes M.G. (ed.), British Photobiology Society, in press.

    Google Scholar 

  • Whitelam G.C. and Smith H. (1991) Retention of phytochrome-mediated shade avoidance response in phytochrome-deficient mutants of Arabidopsis, cucumber and tomato. J. Plant Physiol. 139:119–125.

    Article  CAS  Google Scholar 

  • Young J.C., Liscum E. and Hangarter R.P. (1992) Spectral-dependence of light-inhibited hypocotyl elongation in photomorphogenic mutants of Arabidopsis: evidence for a UV-A photosensor. Planta 188:106–114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koornneef, M., Kendrick, R.E. (1994). Photomorphogenic mutants of higher plants. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics