Skip to main content

Magnetohydrodynamic Waves in Structured Magnetic Fields

  • Chapter
Sunspots: Theory and Observations

Part of the book series: NATO ASI Series ((ASIC,volume 375))

Abstract

The nature of magnetohydrodynamic waves in structured magnetic fields is discussed, with particular reference to sunspots. The modes of oscillation of an isolated flux tube are reviewed. We consider the nature of surface waves on an interface between two isothermal gases, one of which is embedded within a horizontal magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdelatif, T. E. (1988) ’Surface and body waves in magnetic flux tubes’, Astrophys. J. 333, 395–406.

    ADS  Google Scholar 

  • Abels-van Maanen, A. E. P. M. and Weenik, M. P. H. (1979) Radio Sci. 14, 301.

    ADS  Google Scholar 

  • Adam, J. A. (1977) ’On the occurrence of critical levels in solar magnetohydrody- namics’, Solar Phys. 52, 293–307.

    ADS  Google Scholar 

  • Adam, J. A. (1982) ’Asymptotic solutions and spectral theory of linear wave equations’, Physics Reports 86, 217–316.

    MathSciNet  ADS  Google Scholar 

  • Adam, J. A. (1986) ’Critical layer singularities and complex eigenvalues in some differential equations of mathematical physics’, Physics Reports 142, 263–356.

    MathSciNet  ADS  Google Scholar 

  • Antia, H. M. and Chitre, S. M. (1979) ’Waves in the sunspot umbra’, Solar Phys. 63, 67–78.

    ADS  Google Scholar 

  • Appert, K., Gruber, R. and Vaclavik, J. (1974) ’Continuous spectra of a cylindrical magnetohydrodynamic equilibrium’, Physics Fluids 17,1471–1472.

    ADS  Google Scholar 

  • Beckers, J. M. and Tallant, P. E. (1969) ’Chromospheric inhomogeneities in sunspot umbrae’, Solar Phys. 7, 351–365.

    ADS  Google Scholar 

  • Bernstein, I. B. and Book, D. L. (1983) ’Effect of compressibility on the Rayleigh- Taylor instability’, Phys. Fluids 26, 453–458.

    ADS  MATH  Google Scholar 

  • Bodo, G., Rosner, R, Ferrari, A. and Knobloch, E. (1989) ’On the stability of magnetized rotating jets: The axisymmetric case’, Astrophys. J. 341, 631–649.

    ADS  Google Scholar 

  • Bogdan, T. B. (1992) ’Sunspot seismology: the interaction of a sunspot with solar p-modes’, these proceedings.

    Google Scholar 

  • Braun, D. C., Duvall, T. L. and Labonte, B. J. (1987) ’Acoustic absorption by sunspots’, Astrophys. J. 319, L27–31.

    ADS  Google Scholar 

  • Braun, D. C., Duvall, T. L. and Labonte, B. J. (1988) ’The absorption of high-degree p-mode oscillations in and around sunspots’, Astrophys. J. 335, 1015–1025.

    ADS  Google Scholar 

  • Braun, D. C., Labonte, B. J. and Duvall, T. L. (1990) ’The spatial distribution of p-mode absorption in active regions’, Astrophys. J. 354, 372–381.

    ADS  Google Scholar 

  • Braun, D. C., Labonte, B. J., Duvall, T. L. and Ryutova, M. P. (1991) ’A possible mechanism for enhanced absorption of p-modes in sunspot and plage regions’, Astrophys. J., preprint.

    Google Scholar 

  • Browning, P. K. (1991) ’Mechanisms of solar coronal heating’, Plasma Phys. and Controlled Fusion 33, 539–571.

    ADS  Google Scholar 

  • Cadez, V. M. and Okretic, V. K. (1989) ’Leakage of MHD surface waves in structured media’, J. Plasma Phys. 41, 23–30.

    ADS  Google Scholar 

  • Cally, P. S. (1985) ’Magnetohydrodynamic tube waves: Waves in fibrils’, Australian J. Phys. 38, 825–837.

    ADS  Google Scholar 

  • Cally, P. S. (1986) ’Leaky and non-leaky oscillations in magnetic flux tubes’, Solar Phys. 103, 277–298.

    ADS  Google Scholar 

  • Cally, P. S. (1991) ’Phase-mixing and surface waves: a new interpretation’, J. Plasma Phys. 45, 453–479.

    ADS  Google Scholar 

  • Cally, P. S. and Adam, J.A. (1983) ’On photospheric and chromospheric penumbral waves’, Solar Phys. 85, 97–111.

    ADS  Google Scholar 

  • Campbell, W. R. and Roberts, B. (1989) ’The influence of a chromospheric magnetic field on the solar p- and f-modes’, Astrophys. J. 338, 538–556.

    ADS  Google Scholar 

  • Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Chen, L. and Hasegawa, A. (1974) ’Plasma heating by spatial resonance of Alfvén wave’, Phys. Fluids 17, 1399–1403.

    ADS  Google Scholar 

  • Chitre, S. M. (1992) ’Theory of umbral oscillations and penumbral waves’, these proceedings.

    Google Scholar 

  • Chitre, S. M. and Davila, J. M. (1991) ’The resonant absorption of p-modes by sunspots with twisted magnetic fields’, Astrophys. J. 371, 785–792.

    ADS  Google Scholar 

  • Coulson, C. A. (1955) Waves, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Cowling, T. G. (1976) Magnetohydrodynamics, Adam Hilger, Bristol.

    MATH  Google Scholar 

  • Davila, J. M. (1987) ’Heating of the solar corona by the resonant absorption of Alfvén waves’, Astrophys. J. 317, 514–521.

    ADS  Google Scholar 

  • Davila, J. M. (1990) ’Sunspot seismology theory’, in E. R. Priest and V. Krishan (eds.), Basic Plasma Processes on the Sun, Kluwer Academic Publishers, Dordrecht, pp. 149–157.

    Google Scholar 

  • Davila, J. M. (1991) ’Resonance absorption heating’, in P. Ulmschneider, E. R. Priest and R. Rosner (eds.), Mechanisms of Chromospheric and Coronal Heating, Springer-Verlag, Heidelberg, pp. 464–479.

    Google Scholar 

  • Edwin, P. M. and Roberts, B. (1983) ’Waves in a magnetic cylinder’, Solar Phys. 88, 179–191.

    ADS  Google Scholar 

  • Einaudi, G. and Mok, Y. (1987) ’Alfvén wave dissipation in the solar atmosphere’, Astrophys. J. 319, 520–530.

    ADS  Google Scholar 

  • Evans, D. J. (1990) The Effects of Magnetic Fields on Oscillations in the Solar Atmosphere, Ph. D. thesis, St Andrews University, pp. 194.

    Google Scholar 

  • Evans, D. J. and Roberts, B. (1990a) ’The oscillations of a magnetic flux tube and its application to sunspots’, Astrophys. J. 348, 346–356.

    ADS  Google Scholar 

  • Evans, D. J. and Roberts, B. (1990b) ’The influence of a chromospheric magnetic field on the frequencies of solar p- and f-modes: II. Uniform chromospheric field’, Astrophys. J. 356, 704–719.

    ADS  Google Scholar 

  • Evans, D. J. and Roberts, B. (1991) ’The sensitivity of a chromospherically induced p- and f-mode frequency shift to the height of the magnetic canopy’, Astrophys. J. 371, 387–395.

    ADS  Google Scholar 

  • Ferraro, V. C. A. and Plumpton, C. (1958) ’Hydromagnetic waves in a horizontally stratified atmosphere’, Astrophys. J. 127, 459–476.

    MathSciNet  ADS  Google Scholar 

  • Giovanelli, R. G. (1972) ’Oscillations and waves in sunspots’, Solar Phys. 27, 71–79.

    ADS  Google Scholar 

  • Goedbloed, J. P. (1971) ’Stabilization of magnetohydrodynamic instabilities by forcefree magnetic fields I. Plane plasma layer’, Physica 53, 412–444.

    ADS  Google Scholar 

  • Goedbloed, J. P. (1983) Lecture Notes in Magnetohydrodynamics, Rijnhuizen Report 83–145, Assoc. Euratom — FOM, pp. 1–289.

    Google Scholar 

  • Goedbloed, J. P. (1984) ’Plasma-vacuum problems in magnetohydrodynamics’, Physica 12D, 107–132.

    ADS  Google Scholar 

  • Goedbloed, J. P. and Hagenbeuk, H. J. L. (1972) ’Growth rates of instabilities of a diffuse linear pinch’, Phys. Fluids 15, 1090–1101.

    ADS  Google Scholar 

  • Gonzalez, A. G. and Gratton, J. (1991) ’Magnetoacoustic surface gravity waves’, Solar Phys. 134, 211–232.

    ADS  Google Scholar 

  • Goossens, M (1991) ’Magnetohydrodynamic waves and wave heating in non-uniform plasmas’, in E.R. Priest and A.W. Hood (eds.), Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge, pp. 137–172.

    Google Scholar 

  • Grossmann, W. and Tataronis, J. (1973) Z. Physik. 261, 217.

    ADS  Google Scholar 

  • Grossmann, W. and Smith, R. A. (1988) ’Heating of solar coronal loops by resonant absorption of Alfvén waves’, Astrophys. J. 332, 476–498.

    ADS  Google Scholar 

  • Hain, K. and Lüst, R. (1958) Z. Naturforsch. 13a, 936.

    ADS  Google Scholar 

  • Heyvaerts, J. and Priest, E. R. (1983) ’Coronal heating by phased-mixed Alfvén waves’, Astron. Astrophys. 117, 220–234.

    ADS  MATH  Google Scholar 

  • Hollweg, J. V. (1982) ’On the origin of solar spicules’, Astrophys. J. 257, 345–353.

    ADS  Google Scholar 

  • Hollweg, J. V. (1986) ’Energy and momentum transport by waves’, in B. Buti (ed.) Advances in Space Plasma Physics, World Scientific, Singapore, p.77.

    Google Scholar 

  • Hollweg, J. V. (1987a) ’Resonant absorption of magnetohydrodynamic surface waves: Physical discussion’, Astrophys. J. 312, 880–885.

    ADS  Google Scholar 

  • Hollweg, J. V. (1987b) ’Resonant absorption of magnetohydrodynamic surface waves: Viscous effects’, Astrophys. J. 320, 875–873.

    ADS  Google Scholar 

  • Hollweg, J. V. (1988) ’Resonance absorption of solar p-modes by sunspots’, Astrophys. J. 335, 1005–1014.

    ADS  Google Scholar 

  • Hollweg, J. V. (1990a) ’Heating of the solar corona’, Computer Phys. Reports 12, 205–232.

    ADS  Google Scholar 

  • Hollweg, J. V. (1990b) ’MHD waves on solar magnetic flux tubes’, in C. T. Russell, E. R. Priest and L. C. Lee (eds.), Physics of Magnetic Flux Ropes, AGU: Washington, Geophys. Mono. 58, pp. 23–31.

    Google Scholar 

  • Hollweg, J. V. (1991) ’Alfvén waves’, in P. Ulmschneider, E. R. Priest and R. Rosner (eds.), Mechanisms of Chromospheric and Coronal Heating, Springer-Verlag, Heidelberg, pp. 423–434.

    Google Scholar 

  • Ionson, J. A. (1978) ’Resonant absorption of Alfvénic surface waves and the heating of solar coronal loops’, Astrophys. J. 226, 650–673.

    ADS  Google Scholar 

  • Jain, R. and Roberts, B. (1991a) ’Magnetoacoustic surface waves at a single interface’, Solar Phys. 133, 263–280.

    ADS  Google Scholar 

  • Jain, R. and Roberts, B. (1991b) ’Magnetoacoustic surface waves’, in P. Ulmschneider, E. R. Priest and R. Rosner (eds.), Mechanisms of Chromospheric and Coronal Heating, Springer-Verlag, Heidelberg, pp. 511–513.

    Google Scholar 

  • Kalkofen, W. (1990) ’The heating of the quiet solar chromosphere’, in E. R. Priest and V. Krishan (eds.), Basic Plasma Processes on the Sun, Kluwer Academic Publishers, Dordrecht, pp. 197–206.

    Google Scholar 

  • Kruskal, M. and Schwarzschild, M. (1954) ’Some instabilities of a completely ionized plasma’, Proc. Roy. Soc. (London) A223, 348–360.

    MathSciNet  ADS  Google Scholar 

  • Lee, M. A. and Roberts, B. (1986) ’On the behaviour of hydromagnetic surface waves’, Astrophys. J. 301, 430–439.

    ADS  Google Scholar 

  • Libbrecht, K. G., Woodward, M.F. and Kaufman, J. M. (1990) ’Frequencies of solar oscillations’, Astrophys. J. Suppl. 74, 1127–1149.

    ADS  Google Scholar 

  • Lighthill, M. J. (1960) ’Studies on magneto-hydrodynamic waves and other anisotropic motions’, Phil. Trans. Roy. Soc. A252, 397–430.

    MathSciNet  ADS  Google Scholar 

  • Lites, B. W. (1986a) ’Photoelectric observations of chromospheric sunspot oscillations. III. Spatial distribution of power and frequency in umbrae’, Astrophys. J. 301, 992–1004.

    ADS  Google Scholar 

  • Lites, B. W. (1986b) ’Photoelectric observations of chromospheric sunspot oscillations. IV. The Ca II H line and He I A10830’, Astrophys. J. 301, 1005–1017.

    ADS  Google Scholar 

  • Lites, B. W. (1988) ’Photoelectric observations of chromospheric sunspot oscillations. V. Penumbral oscillations’, Astrophys. J. 334, 1054–1065.

    ADS  Google Scholar 

  • Lites, B. W. (1992) ’Observations of oscillations in sunspots’, these proceedings.

    Google Scholar 

  • Lites, B. W., White, O. R. and Packman, D. (1982) ’Photoelectric observations of propagating sunspot oscillations’, Astrophys. J. 253, 386–392.

    ADS  Google Scholar 

  • Lou, Y.-Q. (1988) ’Viscous magnetohydrodynamic modes and p-mode absorption by sunspots’, in Proc. Symp. Seismology of the Sun and Sun-like Stars, ESA SP-286, Noordwijk, pp. 305–310.

    Google Scholar 

  • Lou, Y.-Q. (1990) ’Viscous magnetohydrodynamic modes and p-mode absorption’, Astrophys. J. 350, 452–462.

    ADS  Google Scholar 

  • McKenzie, J. F. (1970) ’Hydromagnetic oscillations of the geomagnetic tail and plasma sheet’, J. Geophys. Res., Space Phys. 75, 5331–5339.

    ADS  Google Scholar 

  • Miles, A. J. (1991) Magnetohydrodynamic Surface Waves in the Solar Atmosphere, Ph. D. thesis, St Andrews University, pp. 197.

    Google Scholar 

  • Miles, A. J., Allen, H. R. and Roberts, B. (1991) ’Magnetoacoustic-gravity surface waves. II. Uniform magnetic field’, Solar Phys., in press.

    Google Scholar 

  • Miles, A. J. and Roberts, B. (1989) ’On the properties of magnetoacoustic surface waves’, Solar Phys. 119, 257–278.

    ADS  Google Scholar 

  • Miles, A. J. and Roberts, B. (1991a) ’The f-mode and MHD surface waves’, in P. Ulmschneider, E. R. Priest and R. Rosner (eds.) Mechanisms of Chromospheric and Coronal Heating, Springer-Verlag, Heidelberg, pp. 508–510.

    Google Scholar 

  • Miles, A. J. and Roberts, B. (1991b) ’Magnetoacoustic-gravity surface waves. I. Constant Alfvén speed’, Solar Phys., in press.

    Google Scholar 

  • Moore, R. and Rabin, D. (1985) ’Sunspots’, Ann. Rev. Astron. Astrophys. 23, 239–266.

    ADS  Google Scholar 

  • Moreno-Insertis, F. and Spruit, H. C. (1989) ’Stability of sunspots to convective motions. I. Adiabatic instability’, Astrophys. J. 342, 1158–1171.

    ADS  Google Scholar 

  • Nocera, L., Leroy, B. and Priest, E. R. (1984) ’Phase mixing of propagating Alfvén waves’, Astron. Astrophys. 133, 387–394.

    ADS  Google Scholar 

  • Nye, A. H. and Thomas, J. H. (1974) ’The nature of running penumbral waves’, Solar Phys. 38, 399–413.

    ADS  Google Scholar 

  • Nye, A. H. and Thomas, J. H. (1976a) ’Solar magneto-atmospheric waves. I. An exact solution for a horizontal magnetic field’, Astrophys. J. 204, 573–581.

    ADS  Google Scholar 

  • Nye, A. H. and Thomas, J. H. (1976b) ’Solar magneto-atmospheric waves. II. A model for running penumbral waves’, Astrophys. J. 204, 582–588.

    ADS  Google Scholar 

  • Parker, E. N. (1974) ’The nature of the sunspot phenomenon I: Solutions of the heat transport equation’, Solar Phys. 36, 249–274.

    ADS  Google Scholar 

  • Parker, E. N. (1979a) ’Sunspots and the physics of magnetic flux tubes. I. The general nature of the sunspot’, Astrophys. J. 230, 905–913.

    ADS  Google Scholar 

  • Parker, E. N. (1979b) Cosmical Magnetic Fields, Oxford University Press, Oxford.

    Google Scholar 

  • Parker, E. N. (1983) ’The propagation of torsion along flux tubes subject to dynamical nonequilibrium’, Geophys. Astrophys. Fluid Dynamics 24, 245–272.

    ADS  MATH  Google Scholar 

  • Parker, E. N. (1987) ’Why do stars emit X-rays?’, Physics Today 40, 36–42.

    Google Scholar 

  • Parker, E. N. (1991a) ’Heating solar coronal holes’, Astrophys. J. 372, 719–727.

    ADS  Google Scholar 

  • Parker, E. N. (1991b) ’The phase mixing of Alfvén waves, coordinated modes, and coronal heating’, Astrophys. J. 376, 355–363.

    ADS  Google Scholar 

  • Poedts, S., Goossens, M. and Kerner, W. (1990) ’On the efficiency of coronal loop heating by resonant absorption’, Astrophys. J. 360, 279–287.

    ADS  Google Scholar 

  • Rae, I. C. and Roberts, B. (1981) ’Surface waves and the heating of the corona’, Geophys. Astrophys. Fluid Dynamics 18, 197–226.

    ADS  MATH  Google Scholar 

  • Rae, I. C. and Roberts, B. (1982) ’Pulse propagation in a magnetic flux tube’, Astrophys. J. 256, 761–767.

    ADS  Google Scholar 

  • Rayleigh, Lord (1877) The Theory of Sound, Dover, New York (reprinted by Dover, 1945), vol. 1, chap. X.

    Google Scholar 

  • Roberts, B. (1980) ’Developpement recent dans la theorie des ondes MHD parfaites dans les milieux presentant une structure magnetique’, Ann. De Physique 5, 453– 481.

    ADS  Google Scholar 

  • Roberts, B. (1981a) ’Wave propagation in a magnetically structured atmosphere; I. Surface waves at a magnetic interface’, Solar Phys. 69, 27–38.

    ADS  Google Scholar 

  • Roberts, B. (1981b) ’Wave propagation in a magnetically structured atmosphere; II. Waves in a magnetic slab’, Solar Phys. 69, 39–56.

    ADS  Google Scholar 

  • Roberts, B. (1981c) ’Waves in magnetic structures’, in L. E. Cram and J. H. Thomas (eds.) Physics of Sunspots, Sacramento Peak Observatory, Sunspot (New Mexico), pp. 360–383.

    Google Scholar 

  • Roberts, B. (1985)’Magnetohydrodynamic waves’, in E. R. Priest (ed.), Solar System Magnetic Fields, Reidel, Dordrecht, pp. 37–79.

    Google Scholar 

  • Roberts, B. (1986) ’Dynamical processes in magnetic flux tubes’, in W. Deinzer, M. Knölker and H. Voight (eds.), Small-Scale Magnetic Flux Concentrations in the Solar Photosphere, Vandenhoeck & Ruprecht, Gottingen, pp. 169–190.

    Google Scholar 

  • Roberts, B. (1987) ’On MHD solitons in jets’, Astrophys. J. 318, 590–594.

    ADS  Google Scholar 

  • Roberts, B. (1988) ’Solar magnetohydrodynamics’, in B. Buti (ed.), Cometary and Solar Plasmas Physics, World Scientific, Singapore, pp. 1–80.

    Google Scholar 

  • Roberts, B. (1990a) ’Properties and models of photospheric flux tubes’, in C. T. Russell, E. R. Priest and L. C. Lee (eds.), Physics of Magnetic Flux Ropes, AGU: Washington, Geophys. Mono. 58, pp. 113–132.

    Google Scholar 

  • Roberts, B.(1990b) ’Waves in magnetic flux tubes’, in E. R. Priest and V. Krishan (eds.), Basic Plasma Processes on the Sun, Kluwer Academic Publishers, Dordrecht, pp. 159–174.

    Google Scholar 

  • Roberts, B. (1990c) ’Oscillations in the sun’, in B. Buti (ed.), Solar and Planetary Plasma Physics, World Scientific, Singapore, pp. 1–31.

    Google Scholar 

  • Roberts, B. (1991a) ’Magnetohydrodynamic surface waves’, in P. Ulmschneider, E. R. Priest and R. Rosner (eds.), Mechanisms of Chromospheric and Coronal Heating, Springer-Verlag, Heidelberg, pp. 494–507.

    Google Scholar 

  • Roberts, B. (1991b) ’Magnetohydrodynamic waves in the sun’, in E.R. Priest and A.W. Hood (eds.), Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge, pp. 105–136.

    Google Scholar 

  • Roberts, B., Edwin, P. M. and Benz, A. O. (1984) ’On coronal oscillations’, Astrophys. J. 279, 857–865.

    ADS  Google Scholar 

  • Roberts, B. and Webb, A. R. (1978) ’Vertical motions in an intense magnetic flux tube’, Solar Phys. 56, 5–35.

    ADS  Google Scholar 

  • Roberts, B. and Webb, A. R. (1979) ’Vertical motions in an intense magnetic flux tube: On the slender flux tube approximation’, Solar Phys. 64, 77–92.

    ADS  Google Scholar 

  • Rosenthal, C. (1990) ’Absorption of acoustic waves in monolithic and fibril sunspot models’, Solar Phys. 130, 313–335.

    ADS  Google Scholar 

  • Ryutov, D. D. and Ryutova, M. P. (1976) ’Sound oscillations in a plasma with magnetic filaments’, Sov. Phys. J.E.T.P. 43, 491–497.

    ADS  Google Scholar 

  • Ryutova, M. P. (1990a) ’Waves and oscillations in magnetic fluxtubes’, in J. O. Stenflo (ed.), Solar Photosphere: Structure, Convection and Magnetic Fields , IAU Symp. 138, Reidel, pp. 229–249.

    Google Scholar 

  • Ryutova, M. P. (1990b) ’Nonlinear waves in flux tubes’, in E. R. Priest and V. Krishan (eds.), Basic Plasma Processes on the Sun, Kluwer Academic Publishers, Dordrecht, pp. 175–186.

    Google Scholar 

  • Ryutova, M. P. and Persson, M. (1984) ’Dispersion properties and enhanced dissipation of MHD-oscillations in a plasma with random inhomogeneities’, Physica Scripta 29, 353–359.

    ADS  Google Scholar 

  • Sakurai, T., Goossens, M. and Hollweg, J. V. (1991a) ’Resonant behaviour of MHD waves on magnetic flux tubes; I. Connection formulae at the resonant surfaces’Solar Phys. 133, 227–245.

    ADS  Google Scholar 

  • Sakurai, T., Goossens, M. and Hollweg, J. V. (1991b) ’Resonant behaviour of MHD waves on magnetic flux tubes; II. Absorption of sound waves by sunspots’, Solar Phys. 133, 247–262.

    ADS  Google Scholar 

  • Scheuer, M.A. and Thomas, J.H. (1981) ’Umbral oscillations as resonant modes of magneto-atmospheric waves’, Solar Phys. 71, 21–38.

    ADS  Google Scholar 

  • Sedlacek, Z. (1971) ’Electrostatic oscillations in a cold inhomogeneous plasma. I. Differential equation approach’, J. Plasma Phys. 5, 239–263.

    ADS  Google Scholar 

  • Small, L. M. and Roberts, B. (1984) ’On running penumbral waves’, in Hydromag- netics of the Sun, ESA SP-220, pp. 257–259.

    Google Scholar 

  • Southwood, D. J. (1974) ’Some features of field line resonances in the magnetosphere’, Planet. Space Sci. 22, 483.

    ADS  Google Scholar 

  • Spruit, H. C. (1981) ’Magnetic flux tubes’, in S. Jordan (ed.), The Sun as a Star, NASA SP-450, Washington, pp. 385–412.

    Google Scholar 

  • Spruit, H. C. (1982) ’Propagation speeds and acoustic damping of waves in magnetic flux tubes’, Solar Phys. 75, 3–17.

    ADS  Google Scholar 

  • Spruit, H. C. and Roberts, B. (1983) ’Magnetic flux tubes on the sun’, Nature 304, 401–406.

    ADS  Google Scholar 

  • Summers, D. (1976) ’Gravity modified sound waves in a conducting stratified atmosphere’, Quart. J. Mech. Appl. Math. 29, 117–126.

    ADS  MATH  Google Scholar 

  • Tataronis, J. A. and Grossmann, W. (1973) ’Decay of MHD waves by phase mixing. I. The sheet pinch in plane geometry’, Z. Physik 261, 203–216.

    ADS  Google Scholar 

  • Tayler, R. J. (1957) ’The influence of an axial magnetic field on the stability of a constricted gas discharge’, Proc. Phys. Soc. (London) B70, 1049–1063.

    ADS  Google Scholar 

  • Thomas, J. H. (1983) ’Magneto-atmospheric waves’, Ann. Rev. Fluid Mech. 15, 321–343.

    ADS  Google Scholar 

  • Thomas, J. H. (1985) ’Hydrodynamic waves in the photosphere and chromosphere’, in H .U. Schmidt (ed.), Theoretical Problems in High Resolution Solar Physics, Max Planck Institute: Munich, MPA 212, pp. 126–149.

    Google Scholar 

  • Thomas, J. H., Cram, L. E. and Nye, A. H. (1982) ’Five-minute oscillations as a subsurface probe of sunspot structure’, Nature 297, 485–487.

    ADS  Google Scholar 

  • Thomas, J. H., Cram, L. E. and Nye, A. H. (1984) ’Dynamical phenomena in sunspots. I. Observing procedures and oscillatory phenomena’, Astrophys. J.285 368–380.

    ADS  Google Scholar 

  • Uberoi, C. (1982) ’A note on the existence of Alfvén surface waves’, Solar Phys. 78, 351–354.

    ADS  Google Scholar 

  • Wentzel, D. G. (1979) ’Hydromagnetic surface waves on cylindrical fluxtubes’, Astron. Astrophys. 76, 20–23.

    ADS  MATH  Google Scholar 

  • Wilson, P. R. (1980) ’The general dispersion relation for the vibration modes of magnetic flux tubes’, Astron. Astrophys. 87, 121–125.

    ADS  Google Scholar 

  • Wittmann, A. (1969) ’Some properties of umbral flashes’, Solar Phys. 7, 366–369.

    ADS  Google Scholar 

  • Yu, C. P. (1965) ’Magneto-atmospheric waves in a horizontally stratified conducting medium’, Phys. Fluids 8, 650–656.

    ADS  MATH  Google Scholar 

  • Zirin, H. and Stein, A. (1972) ’Observations of running penumbral waves’, Astrophys. J. Lett. 178, L85–87.

    ADS  Google Scholar 

  • Zhugzhda, Y. D. and Dzhalilov, N. S. (1984) ’Magneto-acoustic-gravity waves on the sun; III. The theory of running penumbral waves’, Aston. Astrophys. 133, 333–340.

    ADS  Google Scholar 

  • Zhugzhda, Y. D., Locans, V. and Staude, J. (1983) ’Seismology of sunspot atmospheres’, Solar Phys. 82, 369–378.

    ADS  Google Scholar 

  • Zhugzhda, Y. D., Locans, V. and Staude, J. (1987) ’The interpretation of oscillations in sunspot umbrae’, Astron. Nachr. 308, 257–269.

    ADS  Google Scholar 

  • Zhugzhda, Y. D., Staude, J. and Locans, V. (1984) ’A model of the oscillations in the chromosphere and transition region above sunspot umbrae’, Solar Phys. 91, 219–234.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Kluwer Academic Publishers

About this chapter

Cite this chapter

Roberts, B. (1992). Magnetohydrodynamic Waves in Structured Magnetic Fields. In: Thomas, J.H., Weiss, N.O. (eds) Sunspots: Theory and Observations. NATO ASI Series, vol 375. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2769-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2769-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5229-0

  • Online ISBN: 978-94-011-2769-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics