Skip to main content

Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions

  • Chapter
The Rhizosphere and Plant Growth

Part of the book series: Beltsville Symposia in Agricultural Research ((BSAR,volume 14))

Abstract

Rhizobacteria live around roots but also inside the cortical root tissues by utilizing organic substances released from root cells into the intercellular spaces and the root environment. The effects of metabolites of these rhizosphere-inhabiting bacteria on root physiology and plant development have hardly been studied. However, recent studies indicate that, depending on environmental factors and plant species, certain strains of rhizosphere Pseudomonas spp. and some of their metabolites such as HCN may inhibit or enhance plant establishment or inhibit development of plant disease. Cultural practices such as cropping frequency, no tillage, and soilless cultivation, as well as edaphic factors seem to determine these rhizosphere interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahl P, Voisard C and Defago G 1986 Iron-bound siderophores, cyanide and antibiotics involved in suppression of Thielaviopsis basicola by a Pseudomonas fluorescens strain. J. Phytopath. 116, 121–134.

    Article  CAS  Google Scholar 

  • Alström S and Burns R G 1989 Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fertil. Soils 7, 232–238.

    Article  Google Scholar 

  • Alves L M, Heisler E G, Kissinger J C, Patterson J M and Kalan E G 1979 Effects of controlled atmospheres on production of sesquiterpenoid stress metabolites by white potato tuber. Pl. Physiol. 63, 359–362.

    Article  CAS  Google Scholar 

  • Arora Y K and Bajaj K L 1985 Peroxidase and polyphenol oxidase associated with induced resistance of mung bean to Rhizoctonia solani Kühn. Phytopathol. Z. 114, 325–331.

    Article  CAS  Google Scholar 

  • Askeland R A and Morrison S M 1983 Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 45, 1802–1807.

    PubMed  CAS  Google Scholar 

  • Baker R, Elad Y and Sneh B 1986 Physical, biological and host factors in iron competition in soils. In Iron, Siderophores, and Plant Diseases. Ed. T R Swinburne, pp. 77–84. Plenum, New York.

    Chapter  Google Scholar 

  • Bakker A W, Bakker P A H M and Schippers B 1989 Deleterious cyanide-producing rhizosphere pseudomonads as a factor limiting potato root growth and tuber yield in high frequency potato-cropping soil. In Effects of Crop Rotation on Potato Production in the Temperate Zones. Eds. J Vos, C D van Loon and G J Bollen. pp. 153–162. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Bakker A W, Cosse A A and Schippers B 1987 The role of HCN-producing Pseudomonas spp. in yield reductions in short potato rotations. Meded. Fac. Landbouww. Rijksuniv. Gent 52, 1111–1117.

    Google Scholar 

  • Bakker A W and Schippers B 1987 Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biol. Biochem. 19, 249–256.

    Google Scholar 

  • Bakker P A H M, Bakker A W, Marugg J D, Weisbeek P J and Schippers B 1987 A bioassay for studying the role of siderophores in potato growth stimulation by Pseudomonas spp. in short potato rotations. Soil Biol. Biochem. 19, 443–449.

    Article  CAS  Google Scholar 

  • Bakker P A H M, Lamers J G, Bakker A W, Marugg J D, Weisbeek P J and Schippers B 1986 The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth. J. Pl. Pathol. 92, 249–256.

    Article  Google Scholar 

  • Bakker P A H M, Van Peer R and Schippers B 1990 Specificity of siderophores and siderophore receptors and biocontrol by Pseudomonas spp. In Biological Control of Soil-borne Plant Pathogens. Ed. D Hornby, pp. 131–142. CAB International.

    Google Scholar 

  • Becker J O and Cook R J 1988 Role of siderophores in suppression of Phythium species and production of increased growth response of wheat by fluorescent pseudomonads. Phytopathology 78, 778–782.

    Article  CAS  Google Scholar 

  • Burr T J and Caesor A 1984 Beneficial plant bacteria. CRC Crit. Rev. PL. Sci. 2, 1–20.

    Article  Google Scholar 

  • Campbell J N, Cass D D and Peteya D J 1987 Colonization and penetration of intact canola seedling roots by an opportunistic fluorescent Pseudomonas sp. and the response of host tissue. Phytopathology 77, 1166–1173.

    Article  Google Scholar 

  • Castric P A 1975 Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can. J. Microbiol. 21, 613–618.

    Article  PubMed  CAS  Google Scholar 

  • Castric P A 1983 Hydrogen cyanide production by Pseudomonas aeruginosa at reduced oxygen levels. Can. J. Microbiol. 29, 1344–1349.

    Article  PubMed  CAS  Google Scholar 

  • Curl E A and Truelove B 1986 The Rhizosphere. Springer-Verlag, Berlin /Heidelberg /New York /Tokyo.

    Book  Google Scholar 

  • Darbyshire J F and Greaves M P 1971 The invasion of pea roots, Pisum sativum L., by soil microorganisms, Acanthamoeba palestinensis (Reich) and Pseudomonas spp. Soil Biol. Biochem. 3, 151–155.

    Article  Google Scholar 

  • Défago G, Berling C H, Burger U, Haas D, Kahr G, Keel C, Voisard C, Wirthner Ph and Wütrich B 1990 Suppression of black root rot of tobacco by a Pseudomonas strain: potental applications and mechanisms. In Biological Control of Soil-borne Plant Pathogens. Ed. D Hornby, pp. 93–108. CAB International.

    Google Scholar 

  • Défago G and Haas D 1990 Pseudomonads as antagonists of soilborne plant pathogens: mode of action and genetic analysis. Soil Biochem. 6, 249–291.

    Google Scholar 

  • Frederickson J K and Elliott L F 1985 Effects on winter wheat seedling growth by toxin-producing rhizobacteria. Plant and Soil 83, 399–409.

    Article  Google Scholar 

  • Hemming B C 1986 Microbial-iron interactions in the plant rhizosphere. An overview. J. PL. Nutr. 9, 505–521.

    Article  CAS  Google Scholar 

  • Howell C R and Stipanovic R D 1979 Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69, 480–482.

    Article  CAS  Google Scholar 

  • Howell C R and Stipanovic R D 1980 Suppression of Phytium ultimum-induced damping-off cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70, 712–715.

    Article  CAS  Google Scholar 

  • Jacobs M J, Bugbee W M and Gabrielson D A 1985 Enumeration, localisation, and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 63, 1262–1265.

    Article  Google Scholar 

  • Keel C, Voisard C, Berling C H, Kahr G and Défago G 1989 Iron sufficiency, a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions. Phytopathology 79, 584–589.

    Article  Google Scholar 

  • Kleeberger A, Castorph H and Klingmuller W 1983 The rhizosphere microflora of wheat and barley with special reference to gram-negative bacteria. Arch. Microbiol. 136, 306–311.

    Article  Google Scholar 

  • Kloepper J W, Lifshitz R and Schroth M N 1988 Pseudomonas inoculants to benefit plant production. ISI Atlas of Science: Anim. PL. Sci. 60–63.

    Google Scholar 

  • Knowles C J 1976 Microorganisms and cyanide. Bacteriol. Rev. 40, 652–680.

    PubMed  CAS  Google Scholar 

  • Knowles C J and Bunch A W 1986 Microbial cyanide metabolism. Adv. Microbiol. Physiol. 27, 73–111.

    Article  CAS  Google Scholar 

  • Kuiper D 1983 Genetic differentiation in Plantago major: Growth and root respiration and their role in phenotypic adaptation. Physiol. Pl. 57, 222–230.

    Article  Google Scholar 

  • Lambers H 1980 The physiological significance of cyanide-resistant respiration in higher plants. PL. Cell Environ. 3, 293–302.

    Article  CAS  Google Scholar 

  • Lambers H 1985 Respiration in Intact Plants and Tissues: Its Regulation and Dependence on Environmental Factors, Metabolism and Invaded Organism. Encyclopedia PL. Physiol. Vol. 18, 418–465.

    CAS  Google Scholar 

  • Laties G G 1982 The cyanide-resistant, alternative path in higher plant respiration. Ann. Rev. PL Physiol. 33, 519–555.

    Article  CAS  Google Scholar 

  • Leong J 1986 Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopath. 24, 187–209.

    Article  CAS  Google Scholar 

  • Lifshitz R, Kloepper J W and Kozlowski M, et al. 1987 Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33, 390–395.

    Article  Google Scholar 

  • Loper J E 1988 Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78, 166–172.

    Article  CAS  Google Scholar 

  • Old K M and Nicolson T H 1978 The root cortex as part of a microbial continuum. In Microbial Ecology. Eds. M W Loutit and J A R Miles, pp 291–294. Springer-Verlag, Berlin/Heidelberg/New York.

    Chapter  Google Scholar 

  • Patriquin D G and Dobereiner J 19878 Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brasil. Can. J. Microbiol. 24, 734–742.

    Google Scholar 

  • Rovira A D and Davey C B 1974 Biology of the rhizosphere. In The Plant Root and Its Environment. Ed. E W Carson. pp 153–204. Univ. Press Virginia, Charlottesville.

    Google Scholar 

  • Schippers B 1988 Biological control of pathogens with rhizobacteria. Philosophical Transactions of the Royal Society, B318, 283–293.

    Article  Google Scholar 

  • Schippers B, Bakker A W and Bakker P A H M 1987 Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopath. 25, 339–358.

    Article  Google Scholar 

  • Schippers B, Bakker P A H M, Bakker A W and Van Peer R 1988 Crop losses due to deleterious rhizobacteria and their prevention by bacterization. Proceedings Brighton Crop Protection Conference ‘Pest and Diseases’: 611–614.

    Google Scholar 

  • Schippers B, Bakker P A H M, Salentijn E and Hoekstra W P M 1989 Antimicrobial metabolite production: a competitive advantage to a soil microorganism? In Risk Assessment in Agricultural Biotechnology. Proc. Int. Conf. UC, Davis, 1988. (In press).

    Google Scholar 

  • Solomonson L P 1981 Cyanide as a metabolite inhibitor. In Cyanide in Biology. Eds. B Vennesland et al. pp. 11–28. Academic Press, London.

    Google Scholar 

  • Stutz E W, Défago G and Kern H 1986 Naturally occuring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76, 181–185.

    Article  Google Scholar 

  • Suslow T V 1982 Role of root-colonizing bacteria in plant growth. In Phytopathogenic Prokaryotes Eds. M S Mount and G H Lacy. Vol. 1, pp 187–223. Academic Press, New York and London.

    Chapter  Google Scholar 

  • Suslow T V and Schroth M N 1982 Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72, 111–115.

    Article  Google Scholar 

  • Symons P C, Kolattukudy P E and Bienfait H F 1985 Iron deficiency decreases suberization in bean roots through a decrease in suberinspecific peroxidase activity. Pl. Physiol. 78, 115–120.

    Article  Google Scholar 

  • Thomashow L S and Weller D 1988 Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gäumannomyces graminis var. tritici. J. Bacteriol. 170, 3499–3508.

    PubMed  CAS  Google Scholar 

  • Van Peer R and Schippers B 1989 Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can. J. Microbiol. 35, 456–463.

    Article  Google Scholar 

  • Voisard C, Keel C, Haas D and Défago G 1989 Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8, 351–358.

    PubMed  CAS  Google Scholar 

  • Weller D M 1988 Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytophath. 26, 379–407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schippers, B., Bakker, A.W., Bakker, P.A.H.M., Van Peer, R. (1991). Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. In: Keister, D.L., Cregan, P.B. (eds) The Rhizosphere and Plant Growth. Beltsville Symposia in Agricultural Research, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3336-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3336-4_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5473-7

  • Online ISBN: 978-94-011-3336-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics