Skip to main content

Microbial production of plant hormones

  • Chapter
The Rhizosphere and Plant Growth

Part of the book series: Beltsville Symposia in Agricultural Research ((BSAR,volume 14))

Abstract

Our laboratory has focused on microbial production of plant hormones and precursor-inoculum interactions. Indole-3-acetic acid was detected in soils incubated with L-tryptophan (L-TRP). Inoculation with the ectomycorrhizae, Pisolithus tinctorius significantly stimulated the growth of Douglas fir when supplied with low concentrations of L-TRP to soil. Among three Azotobacter spp. and two Pseudomonas spp., the most prolific producer of cytokinins was A. chroococcum and among the precursors tested, adenine (ADE) and isopentyl alcohol (IA) were the most effective. Corn rhizosphere was found to be quite rich with microflora capable of producing ethylene from L-methionine (L-MET). Amino acids, carbohydrates and organic acids typically found in root exudates, were stimulatory to ethylene biosynthesis in soil. Etiolated pea seedlings exhibited the classical ‘triple’ response when L-MET and Acremonium falciforme were applied in combination to sterile soil or when L-MET was added to nonsterile soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams D O and Yang S F 1979 Ethylene biosynthesis: identification of 1-aminocylopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76, 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Andel O M van and Fuchs A 1972 Interference with plant growth regulation by microbial metabolites. In Phytotoxins in Plant Disease. Eds. R K S Wood, A Bailie and A Graniti. pp 227–249. Academic Press, London.

    Google Scholar 

  • Arshad M and Frankenberger W T Jr 1988 Influence of ethylene produced by soil microorganisms on etiolated pea seedings. Appl. Env. Microbiol. 54, 2728–2732.

    CAS  Google Scholar 

  • Arshad M and Frankenberger W T Jr 1989 Biosynthesis of ethylene by Acremonium falciforme. Soil Biol. Biochem. 21, 633–638.

    Article  CAS  Google Scholar 

  • Arshad M and Frankenberger W T Jr 1990 Ethylene accumulation in soil in response to organic amendments. Soil Sci. Soc. Am. J. (in press).

    Google Scholar 

  • Barea J M and Brown M E 1974 Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J. Appl. Bacteriol. 37, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Brown M E and Burlingham S K 1968 Production of plant growth substances by Azotobacter chroococcum. J. Gen. Microbiol. 53, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Dasilva E J, Henriksson E and Henriksson L A 1974 Ethylene production by fungi. Plant Sci. Lett. 2, 63–66.

    Article  CAS  Google Scholar 

  • Döbereiner J, Marriel I E and Nery M 1976 Ecological distribution of Spirillum lipoferum. Beyerinck. Can. J. Microbiol. 22, 1464–1473.

    Article  Google Scholar 

  • Frankenberger W T Jr and Brunner W 1983 Methods of detection of auxin-indole-3-acetic acid in soils by high performance liquid chromatography. Soil Sci. Soc. Am. J. 47, 237–241.

    Article  CAS  Google Scholar 

  • Frankenberger W T Jr and Poth M 1987a Determination of substituted indole derivatives by ion suppression-reverse-phase high-performance liquid chromatography. Anal. Biochem. 165, 300–308.

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger W T Jr and Poth M 1987b Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl. Environ. Microbiol. 53, 2908–2913.

    PubMed  CAS  Google Scholar 

  • Frankenberger W T Jr and Poth M 1988 L-tryptophan transaminase of a bacterium isolated from the rhizosphere of Fustuca octoflora (Graminae). Soil Biol. Biochem. 20, 299–304.

    Article  CAS  Google Scholar 

  • Gamborg O I and Wetter L R 1963 An aromatic amino acid transaminase from mung bean. Can. J. Biochem. Physiol. 41, 1733–1740.

    Article  CAS  Google Scholar 

  • Gruen H E 1959 Auxins and fungi. Annu. Rev. Plant Physiol. 10, 405–440.

    Article  CAS  Google Scholar 

  • Hubbell D H, Tien T M, Gaskin M H and Lee J 1979 Physiological interaction in the Azospirillum — grass root association. In CRC Associative Symbiosis. Eds. P B Vose and A P Ruschel. 1, 1–6.

    Google Scholar 

  • Hussain A, Arshad M, Hussain A and Hussain F 1987 Response of maize (Zea mays) to Azotobacter inoculation under fertilized and unfertilized conditions. Biol. Fertil. Soils 4, 73–77.

    Google Scholar 

  • Jackson M B and Campbell D J 1975 Movement of ethylene from roots to shoots, a factor in the responses of tomato plants to waterlogged conditions. New Phytol. 74, 397–406.

    Article  CAS  Google Scholar 

  • Jagnow G 1987 Inoculation of cereal crops and forage grasses with nitrogen-fixing rhizosphere bacteria: Possible causes of success and failure with regard to yield response — A review. Z. Pflanzenernaehr. Bodenkd. 150, 361–368.

    Article  Google Scholar 

  • Kaper J M and Veldstra H 1958 Metaboism of tryptophan by Agrobacterium tumefaciens. Biochim. Biophys. Acta 30, 401–420.

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Breckenridge C and Knowles R 1970 Effect of some culture conditions on the production of indole-3-acetic acid and a gibberellin-like substance by Azotobacter vinelandii. Can. J. Microbiol. 16, 1325–1330.

    Article  PubMed  CAS  Google Scholar 

  • Libbert E and Brunn K 1961 Nachweis von indol-3-brenz-trauben saure und indol-3-athanol (tryptophol) bei der enzymatischen auxin bildung aus tryptophan in vitro. Naturwissenschaft 48, 741.

    Article  CAS  Google Scholar 

  • Lynch J M 1972 Identification of substrates and isolation of microorganisms responsible for ethylene production in the soil. Nature 240, 45–46. London.

    Article  CAS  Google Scholar 

  • Lynch J M 1985 Origin, nature and biological activity of aliphatic substances and growth hormones found in soil. In Soil Organic Matter and Biological Activity. Eds. D Vaughan and R E Malcolm, pp 151–174. Martinus Nijhoff/ Dr W Junk Publishers. Dordrecht/Boston/Lancaster.

    Chapter  Google Scholar 

  • Lynch J M and Harper S H T 1974a Formation of ethylene by a soil fungus. J. General Microbiol. 80, 187–195.

    Article  Google Scholar 

  • Lynch J M and Harper S H T 1974b Fungal growth rate and the formation of ethylene in soil. J. Gen. Microbiol. 85, 91–96.

    Article  PubMed  CAS  Google Scholar 

  • Nieto K F and Frankenberger W T Jr 1988 Determination of cytokinins by ion suppression-reverse phase high performance liquid chromatography. J. Liq. Chrom. 11, 2907–2925.

    Article  CAS  Google Scholar 

  • Nieto K F and Frankenberger W T Jr 1989a Biosynthesis of cytokinins produced by Azotobacter chroococcum. Soil Biol. Biochem. 21, 967–972.

    Article  CAS  Google Scholar 

  • Nieto K F and Frankenberger W T Jr 1989b Biosynthesis of cytokinins in soil. Soil Sci. Soc. Am. J. 53, 735–740.

    Article  CAS  Google Scholar 

  • Nieto K F and Frankenberger W T Jr 1990 Microbial production of cytokinins. In Soil Biochemistry. Vol. 6. pp 191–248. Eds. J M Bollag and G Stotzky. Marcel Dekker, New York.

    Google Scholar 

  • Perley J E and Stowe B B 1966a The production of tryptamine from tryptophan by Bacillus cereus (KVT). Biochem. J. 100, 169–174.

    PubMed  CAS  Google Scholar 

  • Perley J E and Stowe B B 1966b On the ability of Taphrina deformans to produce indole acetic acid from tryptophan by way of triptomine. Plant Physiol. 41, 234–237.

    Article  PubMed  CAS  Google Scholar 

  • Phillips D A and Torrey J G 1970 Cytokinin production by Rhizobium japonicum. Physiol. Plant. 23, 1057–1063.

    Article  CAS  Google Scholar 

  • Primrose S B 1976 Formation of ethylene by Escherichia coli. J. Gen. Microbiol. 95, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Primrose S B 1979 A review, ethylene and agriculture: the role of the microbes. J. Appl. Bacteriol. 46, 1–25.

    Article  CAS  Google Scholar 

  • Primrose S B and Dilworth M J 1976 Ethylene production by bacteria. J. Gen. Microbiol. 93, 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Puppo A and Rigaud J 1978 Cytokinins and morphological aspects of French-bean roots in the presence of Rhizobium. Physiol. Plant. 42, 205–206.

    Article  Google Scholar 

  • Sembdner G, Gross D, Liebisch H W and Schneider G 1980 Biosynthesis and metabolism of plant hormones. In Hormonal Regulation of Development. I. Molecular Aspects of Plant Hormones. Ed. J MacMillan. pp 281–444. Springer, New York.

    Chapter  Google Scholar 

  • Smith A M 1976 Ethylene in soil biology. Annu. Rev. Phytopathol. 14, 53–73.

    Article  CAS  Google Scholar 

  • Swanson B T, Wilkins H F and Kennedy B 1979 Factors affecting ethylene production by some plant pathogenic bacteria. Plant and Soil 51, 19–26.

    Article  CAS  Google Scholar 

  • Thomas K C and Spencer M 1977 L-methionine as an ethylene precursor in Saccharomyces cerevisiae. Can. J. Microbiol. 23, 1669–1674.

    Article  PubMed  CAS  Google Scholar 

  • Tien T M, Gaskins M H and Hubbell D H 1979 Plant growth substances produced by Azospirillum bransilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Env. Microbiol. 37, 1016–1024.

    CAS  Google Scholar 

  • Truelsen T A 1972 Indole-3-pyruvic acid as an intermediate in the conversion of tryptophan to indole-3-acetic acid. I. Some characteristics of tryptophan transaminase from mung bean seedling. Physiol. Plant. 26, 289–295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arshad, M., Frankenberger, W.T. (1991). Microbial production of plant hormones. In: Keister, D.L., Cregan, P.B. (eds) The Rhizosphere and Plant Growth. Beltsville Symposia in Agricultural Research, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3336-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3336-4_71

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5473-7

  • Online ISBN: 978-94-011-3336-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics