Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 345))

Abstract

This chapter is a review of current physics-based techniques for modeling snowmelt. Mixture theory is used to develop the equations of conservation of mass, momentum and energy for snow treated as a two-component, three-phase mixture of ice, water, water vapor, and air. The constitutive laws and boundary conditions required to complete a general snowmelt model are then described, with particular attention to the energy balance at the upper boundary of a snowpack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akan, A. O.: 1984, ‘Simulation of Runoff from Snow Covered Hillslopes,’ Water Resources Research 20(6), 707–713.

    Article  Google Scholar 

  • Anderson, E. A.: 1976, ‘A Point Energy and Mass Balance Model of a Snow Cover,’ NOAA Technical Report, National Weather Service 19, US Department of Commerce.

    Google Scholar 

  • Andreas, E. L.: 1986, ‘Theory for the Scalar Roughness and the Scalar Transfer Coefficients Over Snow and Sea Ice,’ US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Report 86–9,19pp.

    Google Scholar 

  • Bohren, C. F., and B. R. Barkstrom: 1974, ‘Theory of the Optical Properties of Snow,’ Journal of Geophysical Research 79(30), 4527–4535.

    Article  Google Scholar 

  • Brutsaert, W.: 1975, ‘The Roughness Length for Water Vapour, Sensible Heat and Other Scalars,’ J. Atmos. Sci. 32, 2028–2031.

    Article  Google Scholar 

  • Brutsaert, W.: 1975a, ‘On a Derivable Formula for Long-Wave Radiation from Clear Skies,’ Water Resources Research 11(5), 742–744.

    Article  Google Scholar 

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley: 1971, ‘Flux Profile Relationships in the Atmospheric Surface Layer,’ J. Atmos. Sci. 28, 181–189.

    Article  Google Scholar 

  • de la Casiniere: 1974, ‘Heat Exchange over a Melting Snow Surface,’ J. Glaciol. 13(67), 55–72.

    Google Scholar 

  • Chamberlain, A. C.: 1983, ‘Roughness Length of Sea, Sand and Snow,’ Boundary Layer Met. 25(4), 405–410.

    Article  Google Scholar 

  • Colbeck, S. C.: 1972, ‘A Theory of Water Percolation in Snow,’ Journal of Glaciology 11(63), 369–385.

    Google Scholar 

  • Colbeck, S. C.: 1974, ‘On Predicting Water Runoff From a Snow Cover,’ in Advanced Concepts in the Study of Snow and Ice Resources, US National Academy of Sciences, Monterey, 1973, pp. 55–66.

    Google Scholar 

  • Colbeck, S. C.: 1975, ‘Grain and Bond Growth in Wet Snow,’ in Snow Mechanics - Symposium - Mécanique de la Niege, Proceedings of the Grindelwald Symposium, April 1974, IAHS-AISH Pub. No. 114, pp. 51–61.

    Google Scholar 

  • Colbeck, S. C.: 1977, ‘Short Term Forecasting of Water Runoff From Snow and Ice,’ Journal of Glaciology 19(81), 571–588.

    Google Scholar 

  • Colbeck, S. C.: 1979, ‘Grain Clusters in Wet Snow,’ Journal of Colloid and Interface Science 72(3), 371–384.

    Article  Google Scholar 

  • Colbeck, S. C., and E. A. Anderson: 1982, ‘The Permeability of a Melting Snow Cover,’ Water Resources Research 18(4), 904–908.

    Article  Google Scholar 

  • Defay, R., I. Prigogine, A. Bellemans, and D. H. Everett: 1966, Surface Tension and Adsorption, Longmans, Green and Co. Ltd.

    Google Scholar 

  • Dozier, J.: 1978, ‘A Solar Radiation Model f r a Snow Surface in Mountainous Terrain,’ in S. C. Colbeck, and M. Ray (eds.), Modeling of Sno Cover Runoff, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, September 1978, pp. 144–153.

    Google Scholar 

  • Dyer, A. J., and B. B. Hicks: 1970, ‘Flux Gradient Relationships in the Constant Flux Layer,’ Quart. J Royal Met. Soc. 96, 715–721.

    Article  Google Scholar 

  • Gardiner, B. G.: 1987, ‘Solar Radiation Transmitted to the Ground Through Cloud in Relation to Surface Albedo,’ Journal of Geophysical Research 94(D4), 4010–4018.

    Article  Google Scholar 

  • Gamier, B. J., and A. Ohmura: 1968, ‘A Method of Calculating the Direct Shortwave Radiation Income of a Slope,’ Journal of Applied Meteorology 7, 796–800.

    Article  Google Scholar 

  • Grainger, M. E., and H. Lister: 1966, ‘Wind Speed, Stability and Eddy Viscosity Over Melting Ice Surfaces,’ J. Glaciol. 6, 101–129.

    Google Scholar 

  • Granger, R. J.: 1977, ‘Energy Exchange During Melt on a Prairie Snowcover,’ MSc Thesis, Department of Mechanical Engineering, University of Saskatchewan.

    Google Scholar 

  • Granger, R. J., and D. H. Male: 1978, ‘Melting of a Prairie Snowpack,’ J. Applied Meteorology 17(12), 1833–1842.

    Article  Google Scholar 

  • Greuell, W., and J. Oerlemans: 1986, ‘Sensitivity Studies With a Mass Balance Model Including the Temperature Profile Calculations Inside the Glacier,’ Zeitschrift fur Gletscherkunde und Glazialgeologie Band 22 Heft 2, s.101–124.

    Google Scholar 

  • Harding, R. J.: 1986, ‘Exchanges of Energy and Mass Associated With a Melting Snowpack,’ in Modelling Snowmelt-Induced Processes,Proceedings of the Budapest Symposium, July 1986, IAHS Publ. No. 155, pp. 3–15.

    Google Scholar 

  • Harding, R. J., H. Escher-Vetter, A. Jenkins, G. Kaser, M. Kuhn, E. M. Morris, and G. Tänzer: 1987, ‘Energy and Mass Balance Studies in the Firn Area of the Hintereisferner,’ Proc. Symposium on Glacier Fluctuations and Climatic Change,Reidel.

    Google Scholar 

  • Hobbs, P. V.: 1974, Ice Physics, Clarendon Press, Oxford.

    Google Scholar 

  • Kelly, R. J.: 1987, ‘Mathematical Models of Multi phase Snowmelt,’ Ph.D. Thesis, University of East Anglia.

    Google Scholar 

  • Kelly, R. J., L. W. Morland, and E. M. Morris: 1986,‘A Three-Phase Mixture Model for Melting Snow,’ in E. M. Morris (ed.), Modelling of Snowmelt Induced Processes, Proceedings of the Budapest Symposium July 1986, IAHS Publication No. 155, pp. 17–26.

    Google Scholar 

  • King, J. C.: In Press, ‘Measurements of Turbulence in the Stably-Stratified Surface Layer Over an Antarctic Ice Shelf,’ Boundary Layer Meteorology.

    Google Scholar 

  • Konstantinov, A. R.: 1966, ‘Evapouration in Nature,’ Israel Program for Scientific Translation, Jerusalem.

    Google Scholar 

  • Kuhn, M.: 1978, ‘The Height of Maximum Speed in Drainage Winds as Parameters of the Energy Budget of a Glacier,’ in Arbeiten aus der Zentralanstalt fur Meteorologie und Geodynamik 31 Wien 1978.

    Google Scholar 

  • Liljequist, G. H.: 1953, ‘Radiation and Wind and Temperature Profiles Over an Antarctic Snowfield - A Preliminary Note,’ Proc. Meteorological Conference Toronto, 1953, Am. Met. Soc., Royal Met. Soc., pp. 78–87.

    Google Scholar 

  • Male, D. H.: 1980, ‘The Seasonal Snowcover,’ in S. C. Colbeck (ed.), Dynamics of Snow and Ice Masses, Academic Press, pp. 305–395.

    Chapter  Google Scholar 

  • Male, D. H., and R. J. Granger: 1981, ‘Snow Surface Energy Exchange,’ Water Resources Research 17(3), 609–627.

    Article  Google Scholar 

  • Manz, D.H.: 1974, ‘Interaction of Solar Radiation With Snow’ M.Sc. Thesis, Department of Agricultural Engineering, University of Saskatchewan, Saskatoon.

    Google Scholar 

  • Mellor, M.: 1977, ‘Engineering Properties of Snow,’ Journal of Glaciology 19(81), 15–65.

    Google Scholar 

  • Morozov, G. A.: 1967, ‘Computation of the Change in the Density of Snow Cover Under the Influence of Water Vapour Diffusion, Convection, Sublimation and Condensation in it,’ Soviet Hydrology Selected Papers 3, 314–319.

    Google Scholar 

  • Morris, E. M.: 1983, ‘Modelling the Flow of Mass and Energy Within a Snowpack for Hydrological Forecasting,’ Annals of Glaciology 4,198–203.

    Google Scholar 

  • Morris, E. M., and J. Godfrey: 1979, ‘The European Hydrological System Snow Routine,’ in S. C. Colbeck, and M. Ray (eds.), Modeling of Snow Cover Runoff, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, September 1978, pp. 269–278.

    Google Scholar 

  • Morris, E. M., and R. J. Kelley: 1990, ‘A Theoretical Determination of the Characteristic Equation for Snow in the Pendular Regime,’ Journal of Glaciology 36(123), 179–187.

    Google Scholar 

  • Munro, D. S., and J. A. Davies: 1977, ‘An Experimental Study of the Glacier Boundary Layer Over Melting Ice,’ J Glaciol. 18(80), 425–436.

    Google Scholar 

  • Navarre, J. P.: 1977, ‘Modele Unidimensionel d’evolution de la Neige Deposee,’ Meteorologie Applie, 109–120.

    Google Scholar 

  • Obled, C., and B. Rosse: 1977, ‘Mathematical Models of a Melting Snowpack at an Index Plot,’ Journal of Hydrology 32(1/2), 139163.

    Google Scholar 

  • O’Brien, H. W., and R. H. Munis: 1975, ‘Red and Near-Infrared Spectral Reflectance of Snow,’ in A. Rango (ed.), Workshop on Operational Applications of Satellite Snowcover Observations, NASA SP-391, pp. 319–334.

    Google Scholar 

  • Palm, E., and M. Tveitereid: 1979, ‘On Heat and Mass Flux Through Dry Snow,’ Journal of Geophysical Research 84(C2), 745–749.

    Article  Google Scholar 

  • Prandtl, L.: 1952, Essentials of Fluid Dynamics, Hafner Publ. Co., New York, 452 pp.

    Google Scholar 

  • Pruppacher, H. R., and J. D. Klett: 1978, Microphysics of Clouds and Precipitation, D. Reidel Publishing Company, Dordrecht, Holland.

    Book  Google Scholar 

  • Schmidt, R. A.: 1982, ‘Vertical Profiles of Wind Speed, Snow Concentration and Humidity in Blowing Snow,’ Boundary Layer Met. 23,233–246.

    Article  Google Scholar 

  • Smithsonian Meteorological Tables: 1971, 6th Revised Edition, Smithsonian Institution Press, City of Washington.

    Google Scholar 

  • Sulakvelidze, G. K.: 1959, ‘Thermoconductivity Equation for Porous Media Containing Saturated Vapour, Water and Ice,’ Bulletin of the Academy of Sciences of the USSR, Geophysics Series, 186–188.

    Google Scholar 

  • Swinbank, W. C.: 1968, ‘A Comparison Between Predictions of Dimensional Analysis for the Constant Flux Layer and Observations in Unstable Conditions,’ Quart. J. Royal Met. Soc. 94, 460–467.

    Article  Google Scholar 

  • Walford, M. E. R., D. W. Roberts, and I. Hill: 1987, ‘Optical Measurements of Water Lenses in Ice,’ Journal of Glaciology 33(114), 159–161.

    Google Scholar 

  • Walmsley, J. L., P. A. Paylor, and T. Keith: 1986, ‘A Simple Model of Neutrally Stratified Boundary Layer Flow Over Complex Terrain with Surface Roughness Modulations (MS3DJH/3R),’ Boundary Layer Met. 3(1/2), 157–186.

    Article  Google Scholar 

  • Warren, S. G.: 1982, ‘Optical Properties of Snow,’ Reviews in Geophysics and Space Physics 20(1), 67–89.

    Article  Google Scholar 

  • WMO: 1986, ‘Intercomparison of Models of Snowmelt Runoff,’ Operational Hydrology Report No. 3, WMO-No.646 Secretariat of the World Meteorological Organisation, Geneva, Switzerland.

    Google Scholar 

  • Yen, Y. C.: 1962, ‘Effective Thermal Conductivity of Ventilated Snow,’ Journal of Geophysical Research 67, 1091–1098.

    Article  Google Scholar 

  • Yen, Y. C.: 1963, ‘Heat Transfer by Vapour Transfer in Ventilated Snow,’ Journal of Geophysical Research 68(4), 1093–1101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morris, E.M. (1991). Physics-Based Models of Snow. In: Bowles, D.S., O’Connell, P.E. (eds) Recent Advances in the Modeling of Hydrologic Systems. NATO ASI Series, vol 345. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3480-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3480-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5538-3

  • Online ISBN: 978-94-011-3480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics