Skip to main content

Learning Bayesian Networks with Local Structure

  • Chapter
Learning in Graphical Models

Part of the book series: NATO ASI Series ((ASID,volume 89))

Abstract

We examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional probability distributions (CPDs) that quantify these networks. This increases the space of possible models, enabling the representation of CPDs with a variable number of parameters. The resulting learning procedure induces models that better emulate the interactions present in the data. We describe the theoretical foundations and practical aspects of learning local structures and provide an empirical evaluation of the proposed learning procedure. This evaluation indicates that learning curves characterizing this procedure converge faster, in the number of training instances, than those of the standard procedure, which ignores the local structure of the CPDs. Our results also show that networks learned with local structures tend to be more complex (in terms of arcs), yet require fewer parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In Proc. 2’nd European Conf. on AI and Medicine. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  • R. R. Bouckaert. Properties of Bayesian network learning algorithms. In R. López de Mantarás and D. Poole, editors, Proc. Tenth Conference on Uncertainty in Artificial Intelligence (UAI ‘84), pages 102–109. Morgan Kaufmann, San Francisco, CA, 1994.

    Google Scholar 

  • C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence in Bayesian networks. In E. Horvitz and F. Jensen, editors, Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI ‘86), pages 115–123. Morgan Kaufmann, San Francisco, CA, 1996.

    Google Scholar 

  • W. Buntine. A theory of learning classification rules. PhD thesis, University of Technology, Sydney, Australia, 1991.

    Google Scholar 

  • W. Buntine. Theory refinement on Bayesian networks. In B. D. D’Ambrosio, P. Sinets, and P. P. Bonissone, editors, Proc. Seventh Annual Conference on Uncertainty Artificial Intelligence (UAI ‘82), pages 52–60. Morgan Kaufmann, San Francisco, CA, 1991.

    Google Scholar 

  • W. Buntine. Learning classification trees. In D. J. Hand, editor, Artificial Intelligence Frontiers in Statistics, number III in Al and Statistics. Chapman & Hall, London, 1993.

    Google Scholar 

  • D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H.-J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V. Springer Verlag, 1996.

    Google Scholar 

  • G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9: 309–347, 1992.

    MATH  Google Scholar 

  • T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, New York, 1991.

    Book  MATH  Google Scholar 

  • M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

    MATH  Google Scholar 

  • F. J. Diez. Parameter adjustment in Bayes networks: The generalized noisy or-gate. In D. Heckerman and A. Mamdani, editors, Proc. Ninth Conference on Uncertainty in Artificial Intelligence (UAI ‘83), pages 99–105. Morgan Kaufmann, San Francisco, CA, 1993.

    Google Scholar 

  • N. Friedman and Z. Yakhini On the sample complexity of learning Bayesian networks. In E. Horvitz and F. Jensen, editors, Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI ‘86). Morgan Kaufmann, San Francisco, CA, 1996.

    Google Scholar 

  • D. Beckerman and J. S. Breese. A new look at causal independence. In R. López de Mantarás and D. Poole, editors, Proc. Tenth Conference on Uncertainty in Artificial Intelligence (UAI ‘84), pages 286–292. Morgan Kaufmann, San Francisco, CA, 1994.

    Google Scholar 

  • D. Beckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20: 197–243, 1995.

    Google Scholar 

  • D. Beckerman. A tutorial on learning Bayesian networks. Technical Report MSR-TR95–06, Microsoft Research, 1995.

    Google Scholar 

  • W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 10: 269–293, 1994.

    Article  Google Scholar 

  • R. Musick. Belief Network Induction. PhD thesis, University of California, Berkeley, CA, 1994.

    Google Scholar 

  • R. M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56: 71–113, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco, CA, 1988.

    Google Scholar 

  • J. R. Quinlan and R. Rivest. Inferring decision trees using the minimum description length principle. Information and Computation, 80: 227–248, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  • J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco, CA, 1993.

    Google Scholar 

  • J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, River Edge, NJ, 1989.

    MATH  Google Scholar 

  • S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in probabilistic networks with hidden variables. In Proc. Fourteenth International Joint Conference on Artificial Intelligence (IJCAI ‘85), pages 1146–1152. Morgan Kaufmann, San Francisco, CA, 1995.

    Google Scholar 

  • G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6: 461–464, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  • J. E. Shore and R. W. Johnson. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory, IT-26(1): 26–37, 1980.

    Google Scholar 

  • D. J. Spiegelhalter and S. L. Lauitzen. Sequential updating of conditional probabilities on directed graphical structures. Networks, 20: 579–605, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Srinivas. A generalization of the noisy-or model. In D. Beckerman and A. Mamdani, editors, Proc. Ninth Conference on Uncertainty in Artificial Intelligence (UAI ‘83), pages 208–215. Morgan Kaufmann, San Francisco, CA, 1993.

    Google Scholar 

  • C. Wallace and J. Patrick. Coding decision trees. Machine Learning, 11: 7–22, 1993.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Friedman, N., Goldszmidt, M. (1998). Learning Bayesian Networks with Local Structure. In: Jordan, M.I. (eds) Learning in Graphical Models. NATO ASI Series, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5014-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5014-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6104-9

  • Online ISBN: 978-94-011-5014-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics