Skip to main content

Phase Transformations in Semiconductors Under Contact Loading

  • Conference paper
Tribology Issues and Opportunities in MEMS

Abstract

Phase transformations occurring in materials under contact loading are important for a wide range of problems in materials science and engineering. We studied solid-state phase transformation, including metallization and amorphization of semiconductors under high non-hydrostatic pressures using a combination of hardness indentation tests, scratch tests, Raman spectroscopy, FTIR and various microscopic techniques. Our experiments demonstrated metallization due to closing of the band gap and consequent formation of metastable phases upon decompression in silicon, germanium and several other semiconductors. For the first time high-pressure, these phases were unambiguously observed in hardness impressions, scratches and machining debris, and for some of these phases Raman spectra have not been published before.

The data obtained confirm that the hardness level of many semiconductors depends on the stress (deformation) needed to initiate the transformation. It may help to choose and/or optimize conditions of ductile-regime machining of semiconductors, as well as give new insights into their surface properties. Information on the phase transformations in the surface layer of materials resulting from contact interactions is important for understanding the mechanisms of wear, friction and erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brazhkin, V.V. and A.G. Lyapin, Lattice Instability Approach to the Problem of High-Pressure Solid-State Amorphization, High Pressure Research,15, 9–30 (1996).

    Article  ADS  Google Scholar 

  2. Cahn, R.W., Metallic Solid Silicon, Nature, 357, 645–646 (1992).

    Article  ADS  Google Scholar 

  3. Gilman, J.J. Mechanism of Shear-Induced Metallization, Czech J. Phys. 45, 913–919 (1995).

    Article  ADS  Google Scholar 

  4. Gogotsi, Y.G., A. Kailer, K.G. Nickel, Phase Transformations in Materials Studied by Micro-Raman Spectroscopy of Indentations, Materials Research Innovations, 1 (1) 3–9 (1997).

    Article  Google Scholar 

  5. Clarke, D.R., M.C. Kroll, P.D. Kirchner, R.F. Cook, B.J. Hockey, Amorphization and Conductivity of Silicon and Germanium Induced by Indentation, Phys. Rev. Lett . 60, 2156–2159 (1988).

    Article  ADS  Google Scholar 

  6. Gridneva, I.V., Y.V. Milman, and V.I. Trefilov, Phase Transition in Diamond-Structure Crystals During Hardness Measurements, Phys. Stat. Solidi 9(14), 177 (1972).

    ADS  Google Scholar 

  7. Pharr, G.M., W. C. Oliver, R. F. Cook, P. D. Kirchner, M. C. Kroll, T. R. Dinger, and D. R. Clarke, Electrical resistance of metallic contacts on silicon and germanium during indentation, J. Mater. Res. 7, 961 (1992).

    Article  ADS  Google Scholar 

  8. Pharr, G.M., W.C. Oliver, D.S. Harding, New Evidence for a Pressure-Induced Transformation During the Indentation of Silicon, J. Mater. Res. 6, 1129–1130 (1991).

    Article  ADS  Google Scholar 

  9. Weppelmann, E.R., J.S. Field and M.V. Swain, Influence of spherical indentor radius on the indentation-induced transformation behavior of silicon, J. Mater. Sci. 30, 2455 (1995).

    Article  ADS  Google Scholar 

  10. Gilman, J.J. Insulator-metal Transitions at Microindentations, J. Mater. Res. 7, 535–538 (1992).

    Article  ADS  Google Scholar 

  11. Weppelmann, E.R., J.S. Field and M.V. Swain, Observation, Analysis and Simulation of the Hysteresis of Silicon Using Ultra-micro-indentation with Spherical Indenters, J. Mater. Res. 8, 830–840 (1993).

    Article  ADS  Google Scholar 

  12. Callahan, D.L. and J.C. Morris, Extent of Phase Transformation in Silicon Hardness Indentations, J. Mater. Res., 7 1614–1617 (1992).

    Article  ADS  Google Scholar 

  13. Morris, J. C., D. L. Callahan, The microstructure of indentation (hardness) impressions in silicon and germanium, in Microstructure of Materials, Ed. K. M. Krishnan, San Francisco Press, San Francisco, CA, p. 104 (1992).

    Google Scholar 

  14. Morris, J.C., D.L. Callahan, J. Kulik, J.A. Patten, R.O., Scattergood, Origins of Ductile Regime in Single-Point Diamond Turning of Semiconductors, J. Am. Ceram. Soc. 78, 2015–2020 (1995).

    Article  Google Scholar 

  15. Morris, J.C., D.L. Callahan, Origins of Microplasticity in Low-Load Scratching of Silicon, J. Mater. Res. 9, 2907–2913 (1994).

    Article  ADS  Google Scholar 

  16. Ferraro, J.R., Vibrational Spectroscopy at High External Pressures: The diamond anvil cell, Academic Press, Orlando, 1984.

    Google Scholar 

  17. Jayaraman, A., Diamond Anvil Cell and High-Pressure Physical Investigations, Rev. Modern Phys. 55, 65–108 (1983).

    Article  ADS  Google Scholar 

  18. Crain, J., G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, G.S. Pawley, Reversible Pressure-Induced Structural Transitions Between Metastable Phases Of Silicon, Phys. Rev. B, 50, 13043–46 (1994)

    Article  ADS  Google Scholar 

  19. Di Gregorio, J.F., T.E. Furtak, Analysis of Residual Stress in 6H-SiC Particles within Al2O3/SiC Composites through Raman Spectroscopy, J.Am. Ceram. Soc. 75, 1854–1857 (1992):

    Article  Google Scholar 

  20. Lucazeau, G., L. Abello, Raman Spectroscopy in Solid State Physics and Material Science. Theory, Techniques and Applications, Analusis, 23, 301–311 (1995).

    Google Scholar 

  21. Sparks R.G. and M.A. Raesler, Micro-Raman Analysis of Stress in Machined Silicon and Germanium, Prec. Eng. 10, 191 (1988).

    Article  Google Scholar 

  22. Shen, H. and F. Pollack, Raman Study of Polish-Induced Strain in <100> and <111> GaAs and InP, J.Appl. Phys. 64, 3233 (1988).

    Article  ADS  Google Scholar 

  23. Lucazeau, G., L. Abello, Micro-Raman Analysis of Residual Stresses and Phase Transformations in Crystalline Silicon under Micro-Indentation, J.Mater.Res., 12, 2262–2273 (1997).

    Article  ADS  Google Scholar 

  24. Jameison, J.C., Crystal Structures at High Pressures of Metallic Modifications of Silicon and Germanium, Science, 139, 762 (1963).

    Article  ADS  Google Scholar 

  25. Minomura, S. and H.G. Drickamer, Pressure-Induced Phase Transformations in Silicon, Germanium, and Some III-V Compounds, J. Phys. Chem. Solids,23 451 (1962).

    Article  ADS  Google Scholar 

  26. Needs, R.J. and A. Mujica, First-principles pseudopotential study of the structural phases of silicon, Phys. Rev. B 51, 9652–60 (1995).

    ADS  Google Scholar 

  27. Wentorf, R.H. and J.S. Kasper, Two New Forms of Silicon, Science, 139 338 (1963).

    Article  ADS  Google Scholar 

  28. Clarysse, P., P. De Wolf, H. Bender, and W. Vandervorst, Recent Insights Into The Physical Modeling of The Spreading Resistance Point Contact, J. Vac. Sci. Technol. B 14, 358–68 (1996).

    Article  Google Scholar 

  29. Piltz, R.O., J.R. Maclean, S.J. Clark, G.J. Ackland, P.D. Hatton, J. Crain, Structure and properties of silicon XII: A complex tetrahedrally bonded phase Phys. Rev. B 52, 4072–85 (1995).

    Article  ADS  Google Scholar 

  30. Hanfland, M. and K. Syassen, Raman Modes of Metastable Phases of Si and Ge, High Pressure Res. 3, 242–44 (1990).

    Article  ADS  Google Scholar 

  31. Kailer, A., Y.G. Gogotsi, K.G. Nickel, Phase Transformations of Silicon Caused by Contact LoadingJ. Appl. Phys. 81 (7) (1997).

    Article  Google Scholar 

  32. Bates, C.H., F. Dachille, R. Roy, High-Pressure Transitions of Germanium and a New High-Pressure Form of Germanium, Science, 147, 860–862 (1965).

    Article  ADS  Google Scholar 

  33. Kasper, J.S., S.H. Richards, The Crystal Structures of New Forms of Silicon and Germanium, Acta Crystallographica, 1964, 17, 752–755.

    Article  Google Scholar 

  34. Nelmes, R.J., M.I. McMahon, N.G. Wright, D.R. Allan, J.S. Loveday, Stability and Crystal Structure of BC8 Germanium, Phys. Rev. B, 48, 9883–86 (1993).

    Article  ADS  Google Scholar 

  35. Nagata, K., Webb, S.J., R.A. Stralding, Raman Spectra of InAs1-xSbx. Alloys and InAs0.58Sb0.42/InSb Strained Layer Superlattice under High Pressure, Phys. Stat. Sol. (b) 198, 527–532 (1996).

    Article  ADS  Google Scholar 

  36. Gilman, J.J. Metallization at Microindentations, in Mat. Res. Soc. Symp. Proc., 276, 191–196, MRS (1992).

    Article  Google Scholar 

  37. Biffano, T.G., T.A. Dow, R.O. Scattergood, Ductile-Regime Grinding: a New Technology for Machining Brittle Materials, J. Engng. for Industry, 113, 184–189 (1991).

    Article  Google Scholar 

  38. Blake, P.N. and R.O. Scattergood, Ductile-Regime Machining of Germanium and Silicon, J. Am. Ceram. Soc. 73, 949–957 (1990).

    Article  Google Scholar 

  39. Lucca, D.A., Y.W. Seo, Effect of Tool-Edge Geometry on Energy Dissipation in Ultraprecision Machining, CIRP Ann., 42 (1) 83 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gogotsi, Y., Rosenberg, M.S., Kailer, A., Nickel, K.G. (1998). Phase Transformations in Semiconductors Under Contact Loading. In: Bhushan, B. (eds) Tribology Issues and Opportunities in MEMS. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5050-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5050-7_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6121-6

  • Online ISBN: 978-94-011-5050-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics