Skip to main content

The Role of Ca2+ in the Binding of Carbohydrates to C-Type Lectins as Revealed by Molecular Mechanics and Molecular Dynamics Calculations

  • Chapter
Molecular Modeling and Dynamics of Bioinorganic Systems

Part of the book series: NATO ASI Series ((ASHT,volume 41))

  • 209 Accesses

Abstract

Lectins constitute a structurally diverse class of proteins or glycoproteins which are characterized by their ability to bind carbohydrates with considerable specificity [1–3]. They are found in various organisms, ranging from viruses, bacteria and plants to humans. There is increasing evidence that carbohydrate-lectin interactions have a fundamental role in cell adhesion processes [4,5], cell proliferation [6], organogenesis and human pathology. Lectins merely bind but do not process carbohydrates. In contrast to, for example, antibodies, which can also bind carbohydrates, lectins are produced constitutively and not as a result of an external stimulus [7,8]. Lectins have been grouped into classes of discrete families based on homologies in their primary structures [9]. Although the number of reported animal lectins continues to increase, a recent classification [9] indicates that most fall into one of five major groups: the Ca2+-dependent (C-type) lectins, the galectins (galactose binding proteins), the mannose-6-phosphate-binding (P-type) lectins, and the immunoglobolin-like (I-type) lectins including sialoadhesins and L-type lectins, related in sequence to the leguminous plant lectins. While the overall architecture of the lectins widely varies, carbohydrate-binding activity can often be assigned to one part of the structure, called a carbohydrate recognition domain (CRD). C-type CRDs are present in a diverse array of protein structures which have been found in serum, extracellular matrix and membranes of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lis, H. and Sharon, N. (1986) Lectins as molecules and as tools, Annu.Rev.Biochem. 55, 35–67.

    Article  CAS  Google Scholar 

  2. Drickamer, K. and E, T. M. (1993) Biology of Animal Lectins, Ann. Rev. Cell. Biol. 9, 237–64.

    Article  CAS  Google Scholar 

  3. Gabius, H. J. and Gabius, S. Glycosciences-Status and Perspectives; Chapman Hall: D-69469 Weinheim, Germany, 1997.

    Google Scholar 

  4. Sharon, N. and Lis, H. (1990) Lectins as cell-recognition molecules. Science 246, 227–234.

    Article  Google Scholar 

  5. Feizi, T. (1993) Oligosaccharides that mediate mammalian cell-cell adhesion, CurrOpin. Struct. Biol. 3, 701–710.

    Article  CAS  Google Scholar 

  6. Zanetta, J.-P. (1997) Lectins and Carbohydrates in Animal Cell Adhesion and Control °Proliferation, in; Gabius, H.-J. and Gabius, S.(eds.), Glycosciences: Status and Perspectives, Chapman & Hall, Weinheim, pp 439–458.

    Google Scholar 

  7. Goldstein, I. J.,Hughes, R. C. and Monsigny, M. (1980) What should be called a lectin?, Nature 285, 66.

    Article  Google Scholar 

  8. Kocourek, J. and Horejsi, V. (1981) Defining a lectin, Nature 290, 188.

    Article  Google Scholar 

  9. Drickamer, K. (1995) Increasing diversity of animal lectin structures, Curr.Opin.Struct.Biol. 5, 612–616.

    Article  CAS  Google Scholar 

  10. Drickamer, K. (1993) Ca2+-dependant carbohydrate-recognition domains in animal proteins, Curr. Opin. Struct. Biol. 3, 392–400.

    Google Scholar 

  11. Lasky, L. A. (1992) Selectins: interpreters of cell-specific carbohydrate information during inflammation, Science 258, 964–69.

    Article  CAS  Google Scholar 

  12. Lasky, L. A. (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response, Annu. Rev. Biochem. 64, 113–139.

    Article  CAS  Google Scholar 

  13. Lee, R. T., Ichikawa, Y., Fay, M., Drickarner, K., Shao, M. S. and Lee, Y. C. (1991) Ligand-binding Characteristics of Rat Serum-type Mannose-binding Protein (MBP-A), J.Biol.Chem. 226, 4810–4815.

    Google Scholar 

  14. Lee, Y. C. and Lee, R. T. (1995) Carbohydrate-Protein Interactions: Basis of Glycobiology, Acc. Chem. Res. 28, 321–327.

    Article  CAS  Google Scholar 

  15. Toone, E. J. (1994) Structure and energetics of protein-carbohydrate complexes, Curr. Opin. Struct. Biol. 4, 719–728.

    Article  CAS  Google Scholar 

  16. Crocker, P. R. and Feizi, T. (1996) Carbohydrate recognition systems: functional triads in cell-cell interactions, Curr. Opin. Struc. Biol. 6, 679–691.

    Article  CAS  Google Scholar 

  17. Weis, W. I. and Drickamer, K. (1996) Structural Basis of Lectin-Carbohydrate Recognition, Annu. Rev. Biochem., 441–473.

    Google Scholar 

  18. Rini, J. M. (1995) X-Ray crystal structures of animal lectins, Curr. Opin. Struc. Biol. 5, 617–621.

    Article  CAS  Google Scholar 

  19. Rini, J. M. (1995) Lectin Structure, Ann. Rev. Biophys. Biomol. Struct. 24, 551–577.

    Article  CAS  Google Scholar 

  20. Blanck, O., Iobst, S. T., Gabel, C. and Drickamer, K. (1996) Introduction of Selectin-like Binding Specifcity into a Homologous Mannose-binding Protein., J.Biol.Chem. 271, 7289–7292.

    Article  CAS  Google Scholar 

  21. Drickamer, K. (1992) Engineering galactose binding activity into a C-type mannose-binding protein Nature 360, 183–186.

    Article  CAS  Google Scholar 

  22. Revelle, B. M., Scott, D., Kogan, T. P., Zheng, J. and Beck, P. J. (1996) Structure-Function Analysis of Pselectin-Sialyl LewisX Binding Interaction: Mutagenic Alternation of Ligand Binding Specificity, J.Biol.Chem. 271, 4289–4297.

    Article  CAS  Google Scholar 

  23. Bajorath, J. and Amuffo, A. (1994) Molecular Model of the Extracellular Lectin-like Domain in CD69, J.Biol.Chem. 269, 32457–32463.

    CAS  Google Scholar 

  24. Bajorath, J. and Amuffo, A. (1995) A Template for Generation and Comparison of Three-dimensional Selectin Models, Biochem.Biophys. Res. Commun. 216.

    Google Scholar 

  25. Cooke, R. M., Hale, R. S., Lister, S. G., Shah, G. and Weir, M. P. (1994) The Conformation of Sialyl LewisX Ligand Changes upon Binding to E-Selectin, Biochemistry 33, 10591–10596.

    Article  CAS  Google Scholar 

  26. Iobst, S. T.,Wormatd, M. R.,Weis, W. I.,Dwek, R. A. and Drickamer, K. (1994) Binding of Sugar Ligands to Ca2+dependant Animal Lectins: I Analysis of Man nose Binding by Site-directed Mutagenesis and NMR, J. Biol. Chem. 269, 15505–15511.

    CAS  Google Scholar 

  27. Iobst, S. T. and Drickamer, K. (1996) Selective Sugar Binding to the Carbohydrate Recognition Domains of the Rat Hepatic and Macrophage Asialoglycoprotein Receptors, J. Biol. Chem. 271, 6686–6693.

    Article  CAS  Google Scholar 

  28. Ng, K. K.-S.,Drickamer, K. and W, W. I. (1996) Structural Analysis of Monosaccharide Recognition of Rat Liver Mannose-binding Protein, J.Biol. Chem. 271, 663–674.

    Article  CAS  Google Scholar 

  29. Kolatkar, A. R. and Weis, W. I. (1996) Structural Basis of Galactose Recognition by C-type Animal Lectins, J. Biol. Chem 271, 6679–6685.

    Article  CAS  Google Scholar 

  30. Siebert, H.-C., von der Lieth, C.-W., Gilleron, M.,Reuter, G., Wituuann, J.,Vliegenthart, J. F. G. and Gabius, H.-J. (1997) Carbohydrate-Protein Interaction, in H.-J. Gabius and S. Gabius (ads.), Glycosciences; Status and Perspectives, Chapman & Hall, Weinheim, pp 291–310

    Google Scholar 

  31. Kollman, P. A. and Metz, K. M. (1990) Computer modeling of the interactions of complex molecules, Acc. Chem. Res. 23, 246–252.

    Article  CAS  Google Scholar 

  32. Weis, W. I., Kahn, R., Fourme, R., Drickamer, K. and Hedrickson, W. A. (1991) Structure of the Calcium-Dependent Lectin Domain from a Rat Mannose-Binding Protein Determined by MAD Phasing Science 254, 1608–1615.

    Article  CAS  Google Scholar 

  33. Weis, W. I.,Drickamer, K. and Hendrickson, W. A. (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide, Nature 360, 127–134.

    Article  CAS  Google Scholar 

  34. Ng, K. K.-S. and Weis, W. I. (1997) Structure of a Selectin-like Mutant of Mannose-Binding Protein Cornplexed with Sialylated and Sulfated Lewisx Oligosaccharides,.

    Google Scholar 

  35. Graves, B. J., Crowther, R. L., Chandran, C., Rumberger, J. M., Li, S., Huang, K.-S., Presky, D. H., Familetti, P. C., Wolitzky, B. A. and Bums, D. K. (1994) Insight into E-selectin/ligand interactions from the crystal structure and mutagenesis of the lec/EGF domains, Nature 367, 532–538.

    Article  CAS  Google Scholar 

  36. Bajorath, J., Hollenbaugh, D., King, G., Harte, W., Eustice, D. C., Darveau, R. P. and Aruffo, A. (1994) CD62/P-Selectin Binding Site for Myeloid Cells and Sulfatides Are Overlapping Biochemistry 33, 1332–1339.

    Article  CAS  Google Scholar 

  37. Weis, W. I. and Drickamer, K. (1994) Trimeric structure of a C-type mannose-binding protein, Structure 2, 1227–1240.

    Article  CAS  Google Scholar 

  38. Boume, Y., van Tilbeurgh, H. and Cambillau, C. (1993) Protein-carbohydrate interactions, Curr. Opinion Struct. Biol. 3, 681–686.

    Article  Google Scholar 

  39. Weiner, S. R., Kollman, P. A., Nguyen, D. T. and Case, D. A. (1986) An all atom forcefield for simulations of proteins and nucleic acid, J. Comput. Chem. 7, 230–252.

    Article  CAS  Google Scholar 

  40. Weiner, S. R.,Kollman, P. A.,Case, D. Singh, U. C.,Ghio, C.,Alagona, G.,Profeta, S. and Weiner, P. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins, J.Am.Chem.Soc. 106, 765–784.

    Article  CAS  Google Scholar 

  41. Hagler, A. T.,Dauber, P. and Lifson, S. (1979) Consistent force field studies of intramolecular forces in hydrogen bonded crystals. II A benchmark for the objective comparison of alternative force fields, J.Am.Chem.Soc, 5122–5130.

    Google Scholar 

  42. Hagler, A. T.,Dauber, P. and Lifson, S. (1979) Consistent force field studies of intermolecular forces in hydrogen bonded crystals. III.The C=O…H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids, J.Am.Chem.Soc., 5131–5141.

    Google Scholar 

  43. Hoops, S. C., Anderson, K. W. and Mers, K. M. J. (1991) Force Field design for metalloproteins, J.Am.Chem.Soc. 113, 4484–4490.

    Article  Google Scholar 

  44. Banci, L., Scgroder, S. and Kollman, P. A. (1992) Molecular dynamics characterization of the active cavity of carboxypeptidase A and some of its inhibitor adducts., Proteins 13, 288–305.

    Article  CAS  Google Scholar 

  45. Merz, K. M. J., Murcko, M. A. and Kollman, P. A. (1991) Inhibition of carbonic anhydrase, J.Am.Chem.Soc. 113, 4484–4490.

    Article  CAS  Google Scholar 

  46. Vedani, A. and Huhta, D. W. (1990) A new force field for modeling metalloproteins, J.Am.Chem.Soc. 112, 4759–4767.

    Article  CAS  Google Scholar 

  47. Liang, J. H. and Lipscomb, W. N. (1990) Binding of CO2 to the active site of human carbonic anhydrase II: A molec ular dynamics study, Proc.Natl.Acad.Sci. U.S.A. 87, 3675–3679.

    Article  CAS  Google Scholar 

  48. Makinen, M. W.,Troyer, J. N.,van der Werff, H.,Berendsen, J. C. and van Gunsteren, W. F. (1989) Dynamical structure of carboxypeptidase A, J.Mol.Biol. 207, 210–216.

    Article  Google Scholar 

  49. Stote, R.H. and Karplus, M. (1995) Zinc Binding in Proteins and Solution: A Simple but Accurate Non-bonded Representation, Proteins 23, 12–31.

    Article  CAS  Google Scholar 

  50. Stote, R. H., State, D. J. and Karplus, M. (1991) On the treatment of electrostatic interactions in biomolecular simulation, J.Chim.Phys. 88, 2419–2433.

    CAS  Google Scholar 

  51. Beseler, B. H., Merz, K. M. and Kollmann, P. A. (1990) Atomic Charges Derived from Semiemperical Methods, J.Comp.Chem. 11, 431–439.

    Article  Google Scholar 

  52. Bohne, A., Lang, E. and von der Lieth, C. W. (1996) SWEET-a quick way to generate reliable 3D-structures of Carbohydrates from sequence information alone., in; Hofesthdt, R.(eds.), Computer Science and Biology, Universität Leipzig, Leipzig, pp 176–178.

    Google Scholar 

  53. Varki, A. (1994) Selectin ligands, Proc. Natl..Acad Sci. USA 91, 7390–7397.

    Article  CAS  Google Scholar 

  54. Erbe, D. V., Wolitzky, B. A., Presta, L. G., Norton, C. R., Ramis, R. J., Burns, D. K., Rumberger, J. M., Narasinga Rao, B. N., Foxall, C. and Branddly, B. K. (1992) Indentification of an E-selectin Region Critical for Carbohydrate Recognition and Cell Adhesion, J. Cell. Biol. 119, 215–227.

    Article  CAS  Google Scholar 

  55. Erbe, D. V.,Watson, S. R.,Presta, L. G.,Wolitzky, B. A.,Foxall, C.,Brandly, B. K. and Lasky, L. A. (1993) P-and S-Selectin Use Common Sites for Carbohydrates Ligand Recognition and Cell Adhesion, J. Cell. Biol. 120, 1227–1235.

    Article  CAS  Google Scholar 

  56. Poppe, L.,Brown, G. S.,Philo, J. S.,Nikrad, P. V. and Shah, B. H. (1997) Conformation od sLex Tetrasaccharide, Free in Solution and Bound to E-, P-, and L-Selectin, J.Am.Chem.Soc. 119, 1727–1736.

    Article  CAS  Google Scholar 

  57. Kogan, T. P., Revelle, B. M.,Tapp, S.,Scott, D. and Beck, P. J. (1995) A Single Amino Acid Residue Can Determine the Ligand Specificity of E-selector, J.Biol.Chem 270, 14047–14055.

    Article  CAS  Google Scholar 

  58. Burling, F.T., Weis, W.I., Flaherty, K.M. and Briinger, A.T. (1996) Direct Observation of Protein Solvation and Discrete Disorder with Experimental Crystallographic Phases, Science 271, 72–76

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Von Der Lieth, CW. (1997). The Role of Ca2+ in the Binding of Carbohydrates to C-Type Lectins as Revealed by Molecular Mechanics and Molecular Dynamics Calculations. In: Banci, L., Comba, P. (eds) Molecular Modeling and Dynamics of Bioinorganic Systems. NATO ASI Series, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5171-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5171-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6174-2

  • Online ISBN: 978-94-011-5171-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics