Skip to main content

The Numerical Modelling of Heat Transfer in Electronic Systems : Challenges and Ideas of Answer

  • Conference paper
Thermal Management of Electronic Systems II

Abstract

For the past 25 years, there has been an ever increasing interest for computerized I analysis, and it would be difficult today to find a field in which searchers or engineers do not make profit of computer codes efficiency in their every day life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saulnier, J.B., Wang, H.Y. and Fourka, B.: Thermal Management of Electronic Systems, Eurotherm Seminar no 36, pp. 6.1, Delft, 1993

    Google Scholar 

  2. Linton, R.L., Agonafer, D.: Thermal model of a PC, Journal of electronic packaging Transaction of the ASME, 134/Vol. 116, June 1994

    Google Scholar 

  3. Ahmed, I., Krame, R.J., and Parsons, J.R.: A preliminary investigation of the cooling of electronic components with flat plate heat sinks, Journal of electronic pachaging Transaction of the ASME, 60/Vol. 116, March 1994

    Google Scholar 

  4. Beckermann, C., Smith, T.F., and Pospichal, B.: Use of a two-dimensional simulation model in the thermal analysis of a multi-board electronic module, Journal of electronic packaging, Transactions of the ASME, 126/Vol. 116, June 1994

    Google Scholar 

  5. Scudeller, Y., Val, C.: Thermal management of electronic systems’95, Eurotherm seminar no36, Sep. 20–22, Leuven Belgium, 1995

    Google Scholar 

  6. Vernotte, P.: Les paradoxes de la théorie continue de Véquation de la chaleur, CR. Acad. Sci., 246, pp. 3154, 1958

    MathSciNet  Google Scholar 

  7. Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une popagation instantanée, CR. Acad. Sci., 247, pp. 431, 1958

    MathSciNet  Google Scholar 

  8. Patankar, S.V.: Recent Developments in Computational Heat Transfer, Journal of Heat Transfer, Vol. 110, pp. 1037, 1988

    Article  ADS  Google Scholar 

  9. Prakash, C., and Patankar, S.V.: A Control-Volume Based Finite-Element Method for Solving the Navier-Stokes Equations Using Equal-Order Velocity-Pressure Interpolation, Numerical Heat Transfer, Vol. 8, pp. 259–280, 1985

    Article  ADS  MATH  Google Scholar 

  10. Baliga, R.B.: An overview of control-volume finite element methods for fluid flow and heat transfer, Advanced concepts and techniques in thermal modelling, Sept. 21–23, Eurotherm seminar no36, Poitiers, 1994

    Google Scholar 

  11. Benbouta, N., Ferrand, and Leboeuf, F.: Convergence acceleration for linear systems iterative resolution and application to computational fluid mechanics, High Performance Computing, Elsevier, pp. 55, 1989

    Google Scholar 

  12. Sidi, A., Ford, W.F. and Smith, D.A., Acceleration of Convergence of Vector Sequences, Siam J. Numer. Anal., Vol. 23, Nol, pp. 64, 1986

    MathSciNet  Google Scholar 

  13. Saulnier, J.B.: Some gateways to optmization of heat transfer modelling, 10th International Heat Transfer Conference, Brighton England, August 1994

    Google Scholar 

  14. Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques: Theory and Applications in Engineering, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.

    Book  MATH  Google Scholar 

  15. Sneddon, I.N.: Fourier Transforms, Mc Graw-Hill Book Co., New York, 1951

    Google Scholar 

  16. Ozisik, M.N.: Heat Conduction, Chapt 13, ed. John Wiley, 1980

    Google Scholar 

  17. Cotta, R.M.: The integral transform method in computational heat and fluid flow, 10th International Heat Transfer Conference, Brighton England, August 1994

    Google Scholar 

  18. Brandt, A.: Multi-Level Adaptive Solutions to Boundary-Value Problems, Mathematics of computation, Vol. 31, Num. 138, pp. 333–390, 1977

    Article  MathSciNet  MATH  Google Scholar 

  19. Hackbusch, W.: Multigrid Methods and Applications, Springer-Verlag, 1985

    Google Scholar 

  20. Vinke, H., Lasance, C.: Thermal management of electronic systems’95, Eurotherm Seminar no45, Sept. 20–22, Leuven Belgium, 1995

    Google Scholar 

  21. Lemonnier, D., Sadat, H. and Saulnier, J.B.: A New Reduction Technique for Non Linear Thermal Models with Conductive and Radiative Couplings, 10th IHTC, Brighton, 1994

    Google Scholar 

  22. Michailesco, G. and Duc, G.: L’approche de la Réduction des Modèles en Automatique: Classification et Simulation en Thermique, Journées d’Etude ENSMA, Poitiers, 1984

    Google Scholar 

  23. Petit, D.: Réduction de Modèles de connaissance et Identification de Modèles d’Ordre Réduit, Application aux Processus de Diffusion Thermique, Thèse d’Etat, Marseille, 1991

    Google Scholar 

  24. Aoki, M.: Control of Large Scale Dynamic Systems by Aggregation, IEEE, Vol. AC13, No3.

    Google Scholar 

  25. Neveu, A. and Flament, B.: Traitement de Grands Systèmes Linéaires par Synthèse Modale, Journées d’études sur la modélisation des champs thermiques, SFT, 1991

    Google Scholar 

  26. Eitelberg, E.: Interactive Model Reduction by Mimizing the Weighted Equation Error, IFAC, 79, Zurich, Computer aided design of control systems, 1980

    Google Scholar 

  27. Saulnier, J.B.; La Réduction des Modèles en Thermiques, AI 83 IASTED Symposium, Lille, 1983

    Google Scholar 

  28. Mérour, P.: La Réduction des Modèles en Thermique: Application à l’Etude d’un Circuit Electronique, Thèse de l’Université de Poitiers, 1986

    Google Scholar 

  29. Sadat, H.: Une Nouvelle Méthode de Modélisation des Transferts Thermiques en Régime Graduellment Varié, Thèse de l’Université de Poitiers, 1988

    Google Scholar 

  30. Petit, D., Hachette, R., and Veyret, D.: A modal identification method to reduce a high order model: application to heat conduction modelling, Submitted International Journal of Modelling and Simulation, 1995

    Google Scholar 

  31. Verlet, L.: Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, Vol. 159, No 1, pp. 159, 1967

    Article  Google Scholar 

  32. Mareschal, M.: Microscopic Simulations of Complex Flows, NATO ASI Series, Series B: Physics, Vol. 236, 1990

    Google Scholar 

  33. Volz, S., Lallemand, M. and Saulnier, J.B.: Etude du comportement thermique des solides aux temps courts par la méthode de la dynamique moléculaire, Congrès de la Société Française des Thermiciens 17–19 Mai, Poitiers France, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Saulnier, J.B. (1997). The Numerical Modelling of Heat Transfer in Electronic Systems : Challenges and Ideas of Answer. In: Beyne, E., Lasance, C.J.M., Berghmans, J. (eds) Thermal Management of Electronic Systems II. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5506-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5506-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6318-0

  • Online ISBN: 978-94-011-5506-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics