Skip to main content

Superconducting Magnetic Gradiometers for Mobile Applications with an Emphasis on Ordnance Detection

  • Chapter
SQUID Sensors: Fundamentals, Fabrication and Applications

Part of the book series: NATO ASI Series ((NSSE,volume 329))

Abstract

Passive magnetic sensors provide one means to conduct mobile area surveys and search operations, useful for a number of applications, including sea mine countermeasures and the detection of unexploded ordnance and packaged biological, chemical and radioactive waste for environmental cleanup. To date, the generally accepted method for such detection involves the generation of two-or three-dimensional magnetic anomaly field maps, using primarily total-field magnetometers. Sensor configurations measuring spatial gradients of magnetic field offer a new opportunity for better localization and classification. Sensors incorporating Superconducting Quantum Interference Devices (SQUIDS) provide the greatest sensitivity available with current technology for magnetic anomaly detection. During the late 1970’s and early 1980’s, the Naval Surface Warfare Center Coastal Systems Station (CSS) developed the Superconducting Gradiometer/Magnetometer Sensor (SGMS) specifically for mobile operations outside the laboratory environment. This sensor technology utilized niobium superconducting components cooled by liquid helium. The SGMS has demonstrated nagged, reliable performance even onboard airborne and undersea towed platforms. In this article, a general perspective for the use of passive magnetic sensors for mobile operations will be established. The SGMS design will be described in some detail. General design principles underlying its mobile application, fundamental sensor and environmental noise issues, and approaches to compensate for them, will be presented. The magnetic sensor detection and classification concept developed for sea mine countermeasures and results from that demonstration will be discussed. Recent developments and future opportunities, especially encompassing the use of high temperature (high-Tc) superconducting components cooled by liquid nitrogen, will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kekelis, G. J. and Wynn, W. M.(1994) Magnetic Field Gatdi Onleters for Ordnance Detection, in the Pmceedings for the Unexploded Ordnance Detection and R emediation Conference, Walcoff & Associates, Inc.

    Google Scholar 

  2. Jet Propulsion Laboratory (1994) Sensor Technology Assessment for Ordnance and Explosive Waste Detection and Location, JPL Report D-11367 Revision A.

    Google Scholar 

  3. Lathrop, J.D. (1995) High Area Rate Reconnaissance (HARR and Mine Reconnaissance/Hunter Exploratory Development Programs, in Dubey, A.C., Cindrkh, I., Ralston, M., and Rigano K., (eds.) Demotion Technologies for Mines and Minelike Targets, Proc. SPIE 2496, pp. 350–356.

    Chapter  Google Scholar 

  4. Vrba, J.D. (1996) SQUID Gradiometers in Real Environments, this volume.

    Google Scholar 

  5. Wynn, W.M., Frahm, C.P., Carroll, P.J., Clark, H., Wellhoner, J., and Wynn, M. J. (1975) Advanced Superconducting Gradiometer/Magnetometer Arrays and a Novel Signal Processing Technique, IEEE Ttans. on Magn., Vol. MAG-11, pp. 701–707.

    Article  ADS  Google Scholar 

  6. Wynn, W.M. (1995) Magnetic Dipole Localization using the Gradient Rate Tensor Measured by a Five-Axis Gradiometer with Known Velocity, in Dubey, A.C., Cindtich, I., Ralston, M. and Rigans, K., (eds.) Detection Technologies for Mines and Minelike Targets, the International society for Optical Engineering.

    Google Scholar 

  7. Superconducting Technology Division, United Scientific Corporation, Santa Clara, CA 91750.

    Google Scholar 

  8. The Unisys Corporation, Defense Products Group, 3333 Pilot Knob Road, St. Paul, MN 55122.

    Google Scholar 

  9. The Loral Federal Systems Company, 9500 Godwin Drive, Manassas, VA 22110.

    Google Scholar 

  10. The IBM Corporation Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.

    Google Scholar 

  11. Quantum Magnetics, 11578 Sorrento Valley Road, San Diego, CA 92121.

    Google Scholar 

  12. Fleming, D.L., Gershenson,M., Hastings, R., Sauter, G.F., and Sweeny, M.F. (1985) Hybrid do SQUIDS containing all Refractory Thin Film Josephson Junctions, JEFF Trans. on Magn., Vol. MAG-21, No. 2, pp. 658–659.

    Article  ADS  Google Scholar 

  13. Clarke, J. (1996) SQUID Fundamentals, this volume.

    Google Scholar 

  14. Matsushita, S. and Campbell, W.H. (1967) Introduction to Geomagnetic Phenomena, Academic Press (2 volumes).

    Google Scholar 

  15. Cladis, J.B., Davidson, G.T., and Newkirk, L.L. (1971) The Trapped Radiation Handbook, DNA 2542H.

    Google Scholar 

  16. Campbell, W.H., (1966) A Review of the Equatorial Studies of Rapid Fluctuation in the Earth’s Magnetic Field, Ann. Geophys. 22, p. 492.

    Google Scholar 

  17. McLeod, M.G. (1992) A Predicted Geomagnetic Field Model for Epoch 1990.0, NRIJFR/7442–92–9414, Naval Research Laboratory, Stennis Space Center, MS 39529–5004.

    Google Scholar 

  18. Clem, T.R., Goldstein, M.I., Purpura, J.W., Allen, L.H., Claassen, J.H., Gubser, D.U., and Wolf, S.A. (1989) Investigation of Noise Sources in SQUID Electronics, IFFF Trans. on Magn., Vol. MAG-25, No. 2, pp. 1012–1017.

    Article  ADS  Google Scholar 

  19. Wellstood, F., Heiden, C., and Clarke, J. (1984) Integrated dc SQUID Magnetometer with a High Slew Rate, Rev. Sci. Instrum 55(6), pp. 952–957.

    Article  ADS  Google Scholar 

  20. Koch, R.H., Foglietti, V., Rozenk, J.R., Stawiasz, K.G., Ketchen, M.B., Lathrop, D.K., Sun, J.Z., and Gallagher, W.J. (1994) Effects of Radio Frequency Radiation on the dc SQUID, Appl. Phys. Lett. 65(1), pp. 100–102.

    Article  ADS  Google Scholar 

  21. . Ball Aerospace Systems Division, P.O. Box 1062, Boulder, CO 80306–1062.

    Google Scholar 

  22. Clarke J., and Koch, R.H. (1988) The Impact of High-Temperature Superconductivity on SQUID Magnetometers, Science, V ol.242, pp. 217–223.

    Article  ADS  Google Scholar 

  23. Koch, R., (1990) SQUIDS made from High Temperature Superconductors, Solid State Technology, pp. 255–260.

    Google Scholar 

  24. Koelle, D., Miklich, E., Dantsker, A.H., Ludwig, F., Nemeth, D.T., Clarke, J., Ruby W., and Char, K. (1993) High Performance dc SQUID Magnetometers with Single Layer YBa2Cu3O7-x, Flux Transformers, Appl. Phys. Lett. 63 (26), pp. 3630–3632.

    Article  ADS  Google Scholar 

  25. Cantor, R., Lee, L.P., Teepe, M., Vinetskiy, V., and Longo, J. Low Noise, Single-Layer YBa2Cu307-x, DC SQUID Magnetometers at 77K, (1995) IEEE Trans. on Applied Superconductivity, Vol. 5, No. 2, pp. 2927–2930.

    Article  Google Scholar 

  26. Heiden, C. (1996) Pulse Tube Refrigerators, this volume.

    Google Scholar 

  27. Conductus, Inc., 969 West Maude Ave., Sunnyvale, CA 84086.

    Google Scholar 

  28. Koch, R.H. (1992) Gradiometer Having a Magnetometer which Cancels Background Magnetic Field from other Magnetometers, U.S. Patent No. 5,122,744.

    Google Scholar 

  29. Allen, G.I., Koch, R.H., and Keefe, G. (1995) Unique Man-Portable 5 Element Fluxgate Gradiometer System, in A. C. Dubey, I. Cindrich, M. Ralston, and K. Rigano (eds.) Detection Technologies for Mines and Minelike Targets, the International Society for Optical Engineering, Proc. SPIE 2496, pp. 384–395.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clem, T.R., Kekelis, G.J., Lathrop, J.D., Overway, D.J., Wynn, W.M. (1996). Superconducting Magnetic Gradiometers for Mobile Applications with an Emphasis on Ordnance Detection. In: Weinstock, H. (eds) SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, vol 329. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5674-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5674-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6393-7

  • Online ISBN: 978-94-011-5674-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics