Skip to main content

Abstract

The enhanced echocontrast associated with the gas microbubbles produced when a liquid is rapidly injected into a large blood vessel was first reported by Gramiak and Shah in 1968 [1]. Twenty-eight years later, microbubbles remain the standard echocontrast enhancers. They have been used clinically to verify the presence of intracardiac shunts [2] and valvular regurgitation [3, 4] and for the measurement of cardiac output [5]. Contrast echocardiography (CE) has also been used as a means of defining myocardial perfusion non-invasively [6]. In recent times this rapidly developing diagnostic technique has been more accurately named myocardial contrast two-dimensional echocardiography (MC-2DE). Contrast enhancers have extended the applications of cardiac color Doppler imaging, and gas bubbles have also found applications outside the cardiovascular system, in establishing tubal patency during investigations of infertility and in the diagnostic evaluation of potential malignancies [7, 8]. In the early days of CE, clinical investigators speculated that the gaseous microbubbles present in the echocontrast agents (ECA) were probably the source of the observed contrast [6, 9]. This discovery was confirmed [10–13] and it is now accepted that the ultrasonic targets in contrast-enhanced ultrasonography are the microbubbles themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968; 3: 356–66.

    Article  PubMed  CAS  Google Scholar 

  2. Valdes-Cruz LM, Sahn DJ. Ultransonic contrast studies for the detection of cardiac shunts. J Am Coll Cardiol 1984; 3: 978–85.

    Article  PubMed  CAS  Google Scholar 

  3. Kerber RE, Kioschos JM, Lauer RM. Use of an ultrasonic contrast method in the diagnosis of valvular regurgitation and intracardiac shunts. Am J Cardiol 1974; 34: 722–7.

    Article  PubMed  CAS  Google Scholar 

  4. Meltzer RS, van Hoogenhuyze DCA, Serruys PW et al. The diagnosis of tricuspid regurgitation by contrast echocardiography. Circulation 1981; 63: 1093.

    Article  PubMed  CAS  Google Scholar 

  5. De Maria AN, Bommer JW, Rasor J et al. Determination of cardiac output by two-dimensional contrast echocardiography. In: Meltzer RS, Roelandt J, editors. Contrast Echocardiography. The Hague: Martinus Nijhoff Publishers 1982; 289–97.

    Google Scholar 

  6. Santoso J, Roelandt J, Mansyoer H et al. Myocardial perfusion imaging in humans by contrast echocardiography using polygelin colloid solution. J Am Coll Cardiol 1985; 6: 612–20.

    Article  PubMed  CAS  Google Scholar 

  7. Degenhardt F. Echo-enhanced salpingography. An investigation of Echovist in 224 patients. Adv Echo-Contrast 1995; 4: 58–9.

    Google Scholar 

  8. Lees W. Doppler ultrasound in tumour diagnosis. Adv Echo-Contrast 1995; 4: 59–61.

    Google Scholar 

  9. Kremkau EP, Gramiak R, Carstensen EL. Ultrasonic detection of cavitation at catheter tips. Am J Roentgenol 1979; 110: 177–83.

    Google Scholar 

  10. Feinstein SB, Shah PM, Bing RJ et al. Microbubble dynamics visualized in the intact capillary circulation. J Am Coll Cardiol 1984; 4: 595–600.

    Article  PubMed  CAS  Google Scholar 

  11. Barrera JG, Fulkerson PK, Rittgers SE et al. The nature of contrast echocardiographic ‘targets’ (abst). Circulation 1978; 58 (Suppl II): 233.

    Google Scholar 

  12. Meltzer RS, Tickner EG, Sahines TP et al. The source of ultrasound contrast effect. J Clin Ultrasound 1980; 8: 121–7.

    Article  PubMed  CAS  Google Scholar 

  13. Kort A, Krougon I. Microbubble formation: In vitro and in vivo observations. J Clin Ultrasound 1982; 10: 117–20.

    Article  PubMed  CAS  Google Scholar 

  14. Xie F, Shapiro J, Meltzer R. Toxicity of intracoronary microbubbles in contrast echo. Circulation 1987; 76 (Suppl IV): 505.

    Google Scholar 

  15. Dick CD, Feinstein SR, Peterson EM et al. Biodistribution of transpulmonary echo-cardiographic contrast agents. Circulation 1987; 76 (Suppl IV): 506.

    Google Scholar 

  16. Feinstein SB, Ten Cate FJ, Zwehl W et al. Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol 1984; 3: 14–20.

    Article  PubMed  CAS  Google Scholar 

  17. Hajduczki I, Rajagopalam RE, Meerbaum S et al. Effects of intracoronary administered echo-contrast agents on epicardial coronary flow, ECG and global and regional hemodynamics. J Cardiovasc Ultrason 1987; 6: 85–93.

    Google Scholar 

  18. Schlief R. The safety and tolerance of SHU-508 A (Levovist) a galactose-based blood pool enhancer. In Press.

    Google Scholar 

  19. Koenig K, Meltzer RS. Effect of viscosity on the size of microbubbles generated for use as echocardiographic contrast agents. J Cardiovasc Ultrason 1986; 5: 3–4.

    Google Scholar 

  20. Roelandt J. Contrast echocardiography. Ultrasound Med Biol 1982; 8: 471–92.

    Article  PubMed  CAS  Google Scholar 

  21. Meltzer RS, Serruys PW, Hugenholtz PG et al. Intravenous carbon dioxide as an echo-cardiographic contrast agent. J Clin Ultrasound 1981; 9: 127–31.

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Wand J, Huang Y et al. Contrast echocardiography with hydrogen peroxide I: Experimental study. Chinese Med 1979; 92: 595–9.

    Google Scholar 

  23. Gross CM, Wann LS, Hurley SE. Evaluation of myocardial perfusion by contrast echocardiography using hydrogen peroxide. Circulation 1982; 66 (Suppl II): 28.

    Google Scholar 

  24. Bommer WJ, Shah PM, Allen H et al. The safety of contrast echocardiography. Report of the Committee on Contrast Echocardiography for the American Society of Echocardiography. J Am Coll Cardiol 1984; 3: 6–13.

    Article  PubMed  CAS  Google Scholar 

  25. Lee F, Ginzton L. A central system complication of contrast echocardiography. J Clin Ultrasound 1983; 11: 292–94.

    Article  PubMed  CAS  Google Scholar 

  26. Büll U, Hör G (eds). Klinische Nuklearmedezin. Edition Medizin. 1987; 135.

    Google Scholar 

  27. Hermann HJ. Nuklearmedezin. München: Urban and Schwarzenberg, 1982; 200.

    Google Scholar 

  28. Glass JM, Yao LX, Rashka PS et al. Frequency dependence of the half life of Albunex. J Am Soc Echocardiography 1991; 4: 300.

    Google Scholar 

  29. Carstensen EL, Kelly P, Church CC et al. Lysis of erythrocytes by exposure to CW ultrasound. Ultrasound Med Biol 1993; 19: 147–65.

    Article  PubMed  CAS  Google Scholar 

  30. Brayman AA, Azadniv M, Makin IRS et al. Effect of a stabilized microbubble echo contrast agent on hemolysis of human erythrocytes exposed to high intensity pulsed ultrasound. Echocardiography 1995; 12: 13–21.

    Article  Google Scholar 

  31. Miller DL, Thomas RM. Ultrasound contrast agents nucleate inertial cavitation in vitro. Ultrasound Med Biol 1995; 21: 1059–65.

    Article  PubMed  CAS  Google Scholar 

  32. Miller MW, Azadniv M, Doida Y et al. Effect of a stabilized microbubble contrast agent on CW ultrasound induced red blood cell lysis in vitro. Echocardiography 1995; 12: 1–12.

    Article  Google Scholar 

  33. Dalecki D, Child SZ, Raeman CH et al. Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound Med Biol 1996 (in preparation).

    Google Scholar 

  34. Raeman CH, Child SZ, Dalecki D et al. Exposure time dependence of the threshold for ultrasonically induced murine lung hemorrhage. Ultrasound Med Biol 1996; 22: 139–41.

    Article  PubMed  CAS  Google Scholar 

  35. Baggs R, Penney DP, Cox C et al. Thresholds for ultrasonically induced lung hemorrhage in neonatal swine. Ultrasound Med Biol 1996; 22: 119–28.

    Article  PubMed  CAS  Google Scholar 

  36. Harrison GH, Eddy HA, Wang JP et al. Microscopic lung alterations and reduction of respiration rate in insonated anesthetized swine. Ultrasound Med Biol 1995; 21: 981–3.

    Article  PubMed  CAS  Google Scholar 

  37. Penney DP, Schenk EA, Maltby K et al. Morphologic effects of pulsed ultrasound in the lung. Ultrasound Med Biol 1993; 19: 127–35.

    Article  PubMed  CAS  Google Scholar 

  38. Raeman CH, Child SZ, Carstensen EL. Timing of exposures in ultrasonic hemorrhage of murine lung. Ultrasound Med Biol 1993; 19: 507–12.

    Article  PubMed  CAS  Google Scholar 

  39. Zachary JF, O’Brien WD Jr. Lung hemorrhage induced by continuous and pulsed wave (diagnostic) ultrasound in mice, rabbits, and pigs. Vet Pathol 1995; 32: 43–54.

    Article  PubMed  CAS  Google Scholar 

  40. Dalecki D, Carol Raeman CH, Child SZ et al. Intestinal hemorrhage from exposure to pulsed ultrasound. Ultrasound Med Biol 1995; 21: 1067–72.

    Article  PubMed  CAS  Google Scholar 

  41. Dalecki D, Child SZ, Raeman CH et al. The influence of contrast agents on hemorrhage produced by lithotripter flields. Urology (in preparation).

    Google Scholar 

  42. Carstensen EL, Hartman C, Child SZ et al. Test for kidney hemorrhage following exposure to intense, pulsed ultrasound. Ultrasound Med Biol 1990; 16: 681–5.

    Article  PubMed  CAS  Google Scholar 

  43. Raeman CH, Child SZ, Dalecki D et al. Damage to murine kidney and intestine from exposure to the fields of a piezoelectric lithotripter. Ultrasound Med Biol 1994; 20: 589–94.

    Article  PubMed  CAS  Google Scholar 

  44. Meltzer RS, Vermeulen HW, Valk N et al. New echocardiographic contrast agents: transmission through the lungs and myocardial perfusion imaging. J Cardiovasc Ultrason 1982; 1: 277–82.

    Google Scholar 

  45. Meltzer RS, Tickner EG, Popp RL. The source of ultrasound contrast effect. J Clin Ultrasound 1980; 8: 121–7.

    Article  PubMed  CAS  Google Scholar 

  46. Carroll BA, Turner RJ, Tickner EG et al. Gelatin encapsulated nitrogen microbubbles as ultrasonic contrast agents. Invest Radiol 1980; 15: 260–6.

    Article  PubMed  CAS  Google Scholar 

  47. Meltzer RS, Klig V, Teichholz LE. Generating precision microbubbles for use as an echocardiographic contrast agent. J Am Coll Cardiol 1985; 5: 978–82.

    Article  PubMed  CAS  Google Scholar 

  48. Bommer WJ, Mason DT, DeMaria AN. Studies in contrast echocardiography: Development of new agents with superior reproducibility and transmission through the lungs. Circulation l979;60(Suppl II): 17.

    Article  Google Scholar 

  49. Ernst A, Cikes I, Cistovic F. Polygelin colloid solution as an echocardiographic contrast agent. J Cardiovasc Ultrason 1984; 3: 143–5.

    Google Scholar 

  50. Santoso T, Roelandt J, Mansyoer H et al. Myocardial perfusion imaging in humans by contrast echocardiography using polygelin colloid solution. J Am Coll Cardiol 1985; 6: 612–20.

    Article  PubMed  CAS  Google Scholar 

  51. Berwing K, Schlepper M. Kontrast-Echokardiographische Darstellung des linken Ventrikels bei peripher venoser Kontrastmittelingiektion bie Patienten. Z Kardiol 1985; 74 (Suppl 5): 15.

    Google Scholar 

  52. Berwing K, Schlepper M. Echocardiographic imaging of the left ventricle by peripheral intravenous injection of echo-contrast agent in patients. Am Heart J 1988; 115: 399.

    Article  PubMed  CAS  Google Scholar 

  53. Lang RM, Borow KM, Neumann A et al. Echocardiographic contrast agents: effects of sonicated microbubbles and carrier solutions on left ventricular contractility. J Am Coll Cardiol 1987; 9: 910–9.

    Article  PubMed  CAS  Google Scholar 

  54. Gillam LD, Kaul S, Fallon JT et al. Functional and pathologic effects of multiple echo-cardiographic contrast injections on the myocardium, brain and kidney. J Am Coll Cardiol 1985; 6: 687–94.

    Article  PubMed  CAS  Google Scholar 

  55. Feinstein SB, Lang RM, Neumann A et al. Intracoronary contrast echocardiography in humans: perfusion and anatomic correlates. Circulation 1985;72(Suppl III):57.

    Google Scholar 

  56. Feinstein SB, Lang RB, Dick C et al. Contrast echocardiography during coronary arteriography in humans: Perfusion and anatomic studies. J Am Coll Cardiol 1988; 11: 59–65.

    Article  PubMed  CAS  Google Scholar 

  57. Reisner SA, Ong LS, Lichtenberg GS et al. Quantitative assessment of the immediate results of coronary angioplasty by myocardial contrast echocardiography. J Am Coll Cardiol 1989; 13: 852–6.

    Article  PubMed  CAS  Google Scholar 

  58. Mudra H, Zwehl W, Klauss V et al. Myocardial contrast echocardiography using sonicated iopramid (Ultravist 370) before and after coronary angioplasty. Z Kardiol 1991; 80: 367–72.

    PubMed  CAS  Google Scholar 

  59. Ten Cate KJ, Drury JK, Meerbaum S. Myocardial contrast two-dimensional echocardiography. Experimental examination at different coronary flow levels. J Am Coll Cardiol 1984; 3: 1219–26.

    Article  PubMed  Google Scholar 

  60. Feinstein SB. Myocardial perfusion imaging: contrast echocardiography today and tomorrow. J Am Coll Cardiol 1986; 8: 251–3.

    Article  PubMed  CAS  Google Scholar 

  61. Keller MW, Feinstein SB, Watson DD. Successful left ventricular opacification following a peripheral venous injection of a sonicated contrast agent: an experimental evaluation. Am Heart J 1987; 114: 570–5.

    Article  PubMed  CAS  Google Scholar 

  62. Keller MW, Glasheen W, Teja K et al. Myocardial contrast echocardiography without significant hemodynamic effects or reactive hyperemia: a major advantage in the imaging of regional myocardial perfusion. J Am Coll Cardiol 1988; 12: 1039–47.

    Article  PubMed  CAS  Google Scholar 

  63. Reisner SA, Ong LS, Shapiro JR et al. Efficacy and safety of myocardial perfusion imaging using intracoronary sonicated albumin in humans (abst). Circulation 1988; 78: 565.

    Google Scholar 

  64. Feinstein SB, Cheirif J, Folkert J et al. Safety and efficacy of a new transpulmonary ultrasound contrast agent: Initial multicenter clinical results. J Am Coll Cardiol 1990; 16: 316–24.

    Article  PubMed  CAS  Google Scholar 

  65. Sanders WE, Cheirif J, Desir R et al. Contrast opacification of left ventricular myocardium following intravenous administration of sonicated albumin microspheres. Am Heart J 1991; 122: 1660–5.

    Article  PubMed  Google Scholar 

  66. Muan B. A survey of the results from clinical trials of Infoson. Presented at the First European Symposium on Ultrasound Contrast Imaging, Rotterdam, Jan 25–26 1996.

    Google Scholar 

  67. Smith MD, Kwan OL, Reiser HJ et al. Superior intensity and reproducibility of SHU-454, a new right heart contrast agent. J Am Coll Cardiol 1984; 3: 992–8.

    Article  PubMed  CAS  Google Scholar 

  68. Smith MD, Elion JL, McLure RR. Left heart opacification with peripheral venous injection of a new saccharide echocontrast agent in dogs. J Am Coll Cardiol 1989; 13: 1622–8.

    Article  PubMed  CAS  Google Scholar 

  69. Rovai D, L’Abbate A, Lombardi M et al. Non-uniformity of the transmural distribution of coronary blood flow during the cardiac cycle. Circulation 1989; 79: 179–87.

    Article  PubMed  CAS  Google Scholar 

  70. Careas J-M. Phase change agents. Adv Echo-contrast 1995; 4: 52–3.

    Google Scholar 

  71. Careas J-M. Echogen emulsion: current clinical status in the development of the first fluorocarbon gas-based contrast agent. First European symposium on ultrasound contrast imaging. Jan 25–26 Rotterdam.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nanda, N.C., Carstensen, E.L. (1997). Echo-enhancing agents: safety. In: Nanda, N.C., Schlief, R., Goldberg, B.B. (eds) Advances in Echo Imaging Using Contrast Enhancement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5704-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5704-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6405-7

  • Online ISBN: 978-94-011-5704-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics