Skip to main content

Microsatellite marker development, mapping and applications in rice genetics and breeding

  • Chapter
Oryza: From Molecule to Plant

Abstract

Microsatellites are simple, tandemly repeated di- to tetra-nucleotide sequence motifs flanked by unique sequences. They are valuable as genetic markers because they are co-dominant, detect high levels of allelic diversity, and are easily and economically assayed by the polymerase chain reaction (PCR). Results from screening a rice genomic library suggest that there are an estimated 5700–10 000 microsatellites in rice, with the relative frequency of different repeats decreasing with increasing size of the motif. A map consisting of 120 microsatellite markers demonstrates that they are well distributed throughout the 12 chromosomes of rice. Five multiple copy primer sequences have been identified that could be mapped to independent chromosomal locations. The current level of genome coverage provided by these simple sequence length polymorphisms (SSLPs) in rice is sufficient to be useful for genotype identification, gene and quantitative trait locus (QTL) analysis, screening of large insert libraries, and marker-assisted selection in breeding. Studies of allelic diversity have documented up to 25 alleles at a single locus in cultivated rice germplasm and provide evidence that amplification in wild relatives of Oryza sativa is generally reliable. The availability of increasing numbers of mapped SSLP markers can be expected to complement existing RFLP and AFLP maps, increasing the power and resolution of genome analysis in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagi H, Yokozeki Y, Inagaki A, Fujimura T: Microsatellite DNA markers for rice chromosomes. Theor Appl Genet 93: 1071–1077 (1996).

    Article  CAS  Google Scholar 

  2. Akkaya MS, Bhagwat AA, Cregan PB: Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35: 1439–1445 (1995).

    Article  CAS  Google Scholar 

  3. Anderson JA, Churchill GA, Sutrique JE, Tanksley SD, Sorrel’s ME: Optimizing parental selection for genetic linkage maps. Genome 36: 181–186 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. Arumunagathan K, Earle ED: Nuclear DNA content of some important plant species. Plant Mol Biol 9: 208–218 (1991).

    Article  Google Scholar 

  5. Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD: Microsatellites and a single nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet, in press (1997).

    Google Scholar 

  6. Becker J, Heun M: Barley microsatellites: Allele variation and mapping. Plant Mol Biol 27: 835–845 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. Bell CJ, Ecker JR: Assignment of 30 microsatellite loci to the linkage map of Arabidopsis Genomics 19: 137–144 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. Blair MW, McCouch SR: Microsatellite and sequence tagged site markers diagnostic for the rice bacterial leaf blight resistance gene xa-5 Theor Appl Genet (in press) (1997).

    Google Scholar 

  9. Bligh HFJ, Till RI, Jones CA: A microsatellite sequence closely linked to the Waxy gene of Oryza sativa Euphytica 86: 83–85 (1995).

    Article  CAS  Google Scholar 

  10. Botstein D, White RL, Skolnick M, Davis RW: Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331 (1980).

    PubMed  CAS  Google Scholar 

  11. Bretting, PK, Widrlechner MP: Genetic markers and plant genetic resource management. Plant Breed Rev 13: 11–86 (1995).

    Google Scholar 

  12. Broun P, Tanksley SD: Characterization and genetic mapping of simple repeat sequences in the tomato genome. Mol Gen Genet 250 1: 39–49 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. Brown, SM, Kresovich S: Molecular characterization for plant genetic resources conservation. In: Paterson AH (ed) Genome Mapping in Plants, pp. 85–93. R. G. Landes Company, (1996).

    Google Scholar 

  14. Brunel D: A microsatellite marker in Helianthus annuus L. Plant Mol Biol 24: 397–400 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. Causse M, Fulton TM, Cho YG, Ahn SN, Wu K, Xiao J, Chunwongse J, Yu Z, Ronald PC, Harrington SE, Second GA, McCouch SR, Tanksley SD: Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251–1274 (1994).

    PubMed  CAS  Google Scholar 

  16. Chen X, Temnynkh S, Xu Y, Cho YG, McCouch SR: Development of a microsatellite map providing genome-wide coverage in rice (Oryza sativa L.) Theor Appl Genet, submitted (1997).

    Google Scholar 

  17. Cheng HH, Crittenden LB: Microsatellite markers for genetic mapping in the chicken. Poult Sci 73: 539–546 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. Cho YG, Kuiper M, McCouch SR, Pot J, Kang MR, Groenen JTM, Eun MY: Integration of AFLP and RFLP markers using recombinant inbred population of rice (Oryza sativa L.) Theor Appl Genet, submitted (1997).

    Google Scholar 

  19. Condit R, Hubbell SP: Abundance and DNA sequence of two base repeat regions in tropical tree genomes. Genome 34: 66–71 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. Devos KM, Bryan GJ, Collins AJ, Stephenson P, Gale MD: Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet 90: 247–252 (1995).

    Article  CAS  Google Scholar 

  21. Dib C, Fauré S, Fizames C, Samson D. Drouot N, Vignal A, Millasseau P, Marc S. Hazan J, Seboun E, Lathrop M, Gyapay G, Morisette J, Weissenbach J: A comprehensive genetic map of the human genome based-on 5264 microsatellites. Nature 380: 152–154 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. Dietrich WF, Miller JC, Steen RG, Merchant M, Damron-Boles D, Husain Z, Dredge R, Daly MJ, Ingalls KA, O’Connor TJ, Evans CA, DeAngelis NM, Levinson DM, Kryglyak L, Goodman N, Copeland NG, Jenkins NA, Hawkins TL, Stein L. Page DC, Lander ES: A comprehensive genetic map of the mouse genome. Nature 380: 149–152 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. Dow BD, Ashley MV, Howe HF: Characterization of highly variable (GA-CT)-n microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet 91 1: 137–141 (1995).

    Article  CAS  Google Scholar 

  24. Estoup A. Presa P, Krieg F, Vaiman D, Guyomard R: (CT)-n and (GT)-n microsatellites: A new class of genetic markers for Salmo trotta L. (brown trout). Heredity 71: 488–496 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. Ghareyazie B, Huang N, Second G, J Bennett J, Khush G: Classification of rice germplasm. I. Analysis using ALP and PCR-based RFLP. Theor Appl Genet 91:218–227 (1996).

    Google Scholar 

  26. Guiderdoni E, Galinato E, Luistro J, Vergara G: Anther culture of tropical japonica × iodica hybrids of rice (Oryza sativa L.). Euphytica 62: 219–224 (1992).

    Article  Google Scholar 

  27. Hahn, WJ, Grifo FT: Molecular markers in plant conservation genetics. In: Sobral BWS (ed) The Impact of Plant Molecular Genetics, pp. 113–136. Birkhaüser, Boston (1996).

    Chapter  Google Scholar 

  28. Hamada H, Kakunaga T: Potential Z-DNA-forming sequences are highly dispersed in the human genome. Nature 298: 396–398 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. Hamada H, Petrino MG, Kakunaga T: A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA 79: 6465–6469 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. Hargrove TR, Cabanilla VL, Coffman WR: Twenty years of rice breeding. BioScience 38: 675–681 (1988).

    Article  Google Scholar 

  31. Huang N, McCouch SR, Mew MT, Parco A, Guiderdoni E: Development of an RFLP map from a double haploid population in rice. Rev Gen Genet 11:134–137 (1994).

    Google Scholar 

  32. Jackson MT: Protecting the heritage of rice biodiversity. GeoJournal 35: 267–274 (1995).

    Article  Google Scholar 

  33. Koh HJ, Heu MH, McCouch SR: Molecular mapping of the gee gene controlling the super-giant embryo character in rice (Oryza sativa L.). Theor Appl Genet 93: 257–261 (1996).

    Article  CAS  Google Scholar 

  34. Kresovich S, Szewc-McFadden AK, Bliek SM, McFerson JR: Abundance and characterization of simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napes L. (rapeseed). Theor Appl Genet 91: 206–211 (1995).

    Article  CAS  Google Scholar 

  35. Kurata) N, Nagamura Y, Yamamoto K, Harushima Y. Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma Y, Umehara Y, Yano M, Sasaki T, Minobe Y: A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet 8: 365–375 (1994).

    Article  PubMed  CAS  Google Scholar 

  36. Lagercrantz U, Ellegren H, Andersson L: The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucl Acids Res 21:1111–1115 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L: Mapmaker an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. Levin I, Cheng HH, Baxter-Jongs C, Hillel J: Turkey microsatellite DNA loci amplified by chicken-specific primers. Anim Genet 26: 107–110 (1995).

    Article  CAS  Google Scholar 

  39. Love JM, Knight AM, Mcaleer MA, Todd JA: Towards construction of a high resolution map of the mouse genome using PCR-analyzed microsatellites. Nucl Acids Res 18 14: 4123–4130 (1990).

    Article  PubMed  CAS  Google Scholar 

  40. Mackill DH, Zhang Z, Redoña ED, Colowit PM: Level of polymorphism and genetic mapping of AFLP markers in rice. Genome, in press (1997).

    Google Scholar 

  41. Maheswaran M, Subudhi PK, Nandi S, Xu JC, Parco A, Yang DC, Huang N: Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet, in press (1997).

    Google Scholar 

  42. Michelmore R: Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopath 15: 393–427 (1995).

    Article  Google Scholar 

  43. Moore SS, Sargeant LL, King TJ, Mattick JS, Georges M, Hetzel JS: The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 10: 654–660 (1991).

    Article  PubMed  CAS  Google Scholar 

  44. Moran C: Microsatellite repeats in pig sus- domestica and chicken gallus-domesticus genomes. J Hered 84: 274–280 (1993).

    PubMed  CAS  Google Scholar 

  45. Morgante M, Olivieri AM: PCR-amplified microsatellites as markers in plant genetics. Plant J 1: 175–182 (1993).

    Article  Google Scholar 

  46. Morton NE: Parameters of the human genome. Proc Nati Acad Sci USA 88: 7474–7476 (1991).

    Article  CAS  Google Scholar 

  47. Olufowote JO, Xu Y, Chen X, Park WD, Beachell HM, Dilday RH, Goto M, McCouch SR: Comparative evaluation of within-cultivar variation of rice (Oryza saliva L.) using microsatellite and RFLP markers. Genome, in press (1997).

    Google Scholar 

  48. Panaud O, Chen X, McCouch SR: Frequency of microsatellite sequences in rice (Oryza sativa L.). Genome 38: 1170–1176 (1995).

    Article  PubMed  CAS  Google Scholar 

  49. Panaud O, Chen X, McCouch SR: Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252, in press (1997).

    Google Scholar 

  50. Paul E, Goto M, McCouch SR (Curators): Rice-Genes. Database accessible via World Wide Web, http://probe.nalusda.gov:8300 (1996).

    Google Scholar 

  51. Paul E, Goto M, McCouch SR: Information resources for Rice. Proceedings of the International Conference on Rice Molecular Biology, Taipei, Taiwan, Oct. 14–16, 1996 (1997).

    Google Scholar 

  52. Poulsen GB, Kahl G, Weising K: Abundance and polymorphism of simple repetitive DNA sequences in Brassica napus L. Theor Appl Genet 85: 994–1000 (1993).

    Article  CAS  Google Scholar 

  53. Powell W, Machray GC, Provan J: Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1: 215–222 (1996).

    Google Scholar 

  54. Redoña ED, Mackill DJ: Molecular mapping of quantitative trait loci in japonica rice. Genome 39: 395–403 (1996).

    Article  PubMed  Google Scholar 

  55. Reed PW, Davies JL, Copeman JB, Benett ST, Palmer SM, Pritchard LE, Gough SCL, Kawaguchi Y, Cordell HJ, Balfour KM, Jenkins SC, Powell EE, Vignal A, Todd JA: Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nature Genet 7: 390–395 (1994).

    Article  PubMed  CAS  Google Scholar 

  56. Röder M, Plaschke J, Koenig SU, Boerner A, Sorrells ME, Tanksley SD, Ganal MW: Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246: 327–333 (1995).

    Article  PubMed  Google Scholar 

  57. Rôngwen J, Akkaya MS, Ghagwat AA, Lavi U, Cregan PB: The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90: 43–48 (1995).

    Article  Google Scholar 

  58. Rychlik W, Rhoads RE: A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucl Acids Res 17: 8543–8551 (1989).

    Article  PubMed  CAS  Google Scholar 

  59. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  60. Schlötterer C, Amos B, Tautz D: Conservation of polymorphic simple sequence loci in cetacean species. Nature 354: 63–65 (1991).

    Article  PubMed  Google Scholar 

  61. Senior ML, Heun M: Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36: 884–889 (1993).

    Article  PubMed  CAS  Google Scholar 

  62. Serikawa T, Kuramoto T, Hilbert P, Mori M, Yamada J, Dubay CJ, Lindpainter K, Ganten D, Guenet JL: Rat gene mapping using PCR-analyzed microsatellites. Genetics 131: 701–722 (1992).

    PubMed  CAS  Google Scholar 

  63. Smith S, Helentjaris T: DNA fingerprinting and plant variety protection. In: Paterson AH (ed) Genome Mapping in Plants, pp. 95–110. R. G. Landes Company (1996).

    Google Scholar 

  64. Tautz D, Ranz M: Simple sequences are ubiquitous repetititve components of eukaryotic genomes. Nucl Acids Res 12: 4127–4138 (1984).

    Article  PubMed  CAS  Google Scholar 

  65. Thomas MR, Scott NS: Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86: 986–990 (1993).

    Google Scholar 

  66. Wang Z, Weber JL, Zhong G, Tanksley SD: Survey of plant short tandem DNA repeats. Theor Appl Genet 88: 1–6 (1994).

    CAS  Google Scholar 

  67. Weber JL: Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms. Genomics 7: 524–530 (1990).

    Article  PubMed  CAS  Google Scholar 

  68. Weber JL, May PE: Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44: 388–396 (1989).

    PubMed  CAS  Google Scholar 

  69. Wooster R, Cleton-Jansen AM, Collins N, Mangion J, Cornelis RS, Cooper CS, Gusterson BA, Ponder BAJ, von Deimling A, Wiestler OD, Cornelisse CJ, Devilee P, Stratton MR: Instability of short tandem repeats (microsatellites) in human cancers. Nature Genet 6: 152–156 (1994).

    Article  PubMed  CAS  Google Scholar 

  70. Wu K-S, Tanksley SD: Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241: 225–235 (1993).

    Article  PubMed  CAS  Google Scholar 

  71. Xiao J, Li J, Yuan L, McCouch SR, Tanksley SD: Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92: 637–643 (1996).

    Article  CAS  Google Scholar 

  72. Xiao J, Li J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Yuan L: A wild species contains genes that may significantly increase the yield of rice. Nature 384: 223–224 (1996).

    Article  CAS  Google Scholar 

  73. Yanagihara S, McCouch SR, Ishikawa K, Ogi Y, Maruyama K, Ikehashi H: Molecular analysis of the inheritance of theS-5 locus, conferring wide compatibility in Indica/Japonica hybrids of rice (O. saliva L.). Theor Appl Genet 90: 182–188 (1995).

    Article  CAS  Google Scholar 

  74. Yang GP, Saghai Maroof MA, Xu CG, Zhang Q, Biyashev RM: Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 245: 187–194 (1994).

    Article  PubMed  CAS  Google Scholar 

  75. Zhao X, Kochert G: Characterization and genetic mapping of a short, highly repeated, interspersed DNA sequence from rice (Oryza sativa L.). Mol Gen Genet 231: 353–359 (1992).

    Article  PubMed  CAS  Google Scholar 

  76. Zhu LH, Chen Y, Xu YB, Xu JC, Cai HW, Ling ZZ: Construction of a molecular map of rice and gene mapping using a double haploid population of a cross between Indica and Japonica varieties. Rice Genet Newsl 10: 132–133 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takuji Sasaki Graham Moore

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McCouch, S.R. et al. (1997). Microsatellite marker development, mapping and applications in rice genetics and breeding. In: Sasaki, T., Moore, G. (eds) Oryza: From Molecule to Plant. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5794-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5794-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6446-0

  • Online ISBN: 978-94-011-5794-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics