Skip to main content

Propagation of Stress Waves in Metals

  • Chapter
Explosive Welding, Forming and Compaction

Abstract

The application of an external force to a body is, by definition a dynamic process. However, when the rate of change of the applied forces is low, one can consider the process of deformation as a sequence of steps in which the body can be considered in static equilibrium. Figure 2.1 shows how the distance between the atoms changes upon the application of an external force F. For each of the stages of deformation shown in Figs. 2.1(b) and 2.1(c), the body can be considered under static equilibrium and one can apply the methods of mechanics of materials to determine the internally-resisting stresses (by the method of sections). Hence, a section made at AA or BB will yield identical stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolsky, H. Stress Waves on Solids, Dover, New York, 1963.

    Google Scholar 

  2. Rinehart, J. S. Stress Transients in Solids, Hyperdynamics, Santa Fe, New Mexico, P.O. Box 392, 1975.

    Google Scholar 

  3. Ghatak, A. K., and Kothari, L. S. An Introduction to Lattice Dynamics, Addison-Wesley, Reading, Mass., 1972, p. 70.

    Google Scholar 

  4. Lee, E. H. In Shock Waves and the Mechanical Properties of Solids, eds. J. J. Burke and V. Weiss, Syracuse U. Press, Syracuse, 1971, p. 3.

    Google Scholar 

  5. Von Karman, T., and Duwez, P. J. Appl. Phys., 21 (1950), 987.

    MATH  MathSciNet  Google Scholar 

  6. Clifton, R. J. Source cited in ref. 4, p. 73.

    Google Scholar 

  7. Herrmann, W. In Propagation of Shock Waves in Solids, ed. E. Varley, ASME, AMD-17, New York, 1976, p. 1.

    Google Scholar 

  8. Chou, P. C. In Dynamic Response of Materials to Intense Impulsive Loading, eds. P. C. Chou and A. K. Hopkins, Air Force Materials Laboratory, WPAFB, 1972, p. 55.

    Google Scholar 

  9. Herrmann, W., and Nunziato, J. W. Source cited in ref. 8, p. 123.

    Google Scholar 

  10. Wasley, R. J. Stress Wave Propagation in Solids, M. Dekker, New York, 1973.

    Google Scholar 

  11. Rice, M. H., Mcqueen, R. G., and Walsh, J. M. Solid State Physics, 6, (1958), 1.

    Google Scholar 

  12. Davison, L., and Graham, R. A. Phys. Rep., 55 (1979), 257.

    ADS  Google Scholar 

  13. Bradley, J. N. Shock Waves in Chemistry and Physics, J. Wiley, New York, 1962.

    Google Scholar 

  14. Kinslow, R., ed. High-Velocity Impact Phenomena, Academic, New York, 1970.

    Google Scholar 

  15. Zeldovich, Ya. B., and Raizer, Yu. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic, New York, 1966.

    Google Scholar 

  16. Wilkins, M. In Methods in Computational Physics, Vol. 3, eds. B. Alder, S. Fernbach, and M. Rotenberg, Academic, New York, 1964, p. 211.

    Google Scholar 

  17. Herrmann, W., Hicks, D. L., and Young, E. G. Source cited in ref. 4, p. 23.

    Google Scholar 

  18. Walsh, R. T. Source cited in ref. 8, p. 363.

    Google Scholar 

  19. Karpp, R., and Chou, P. C. Source cited in ref. 8, p. 283.

    Google Scholar 

  20. Rohde, R. W., Butcher, B. M., Holland, J. R., and Karnes, C. H. Metallurgical Effects at High Strain Rates, Plenum, New York, 1973.

    Google Scholar 

  21. Meyers, M. A., and Murr, L. E., eds. Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Plenum, New York, 1981.

    Google Scholar 

  22. Kreyzig, E. Advanced Engineering Mathematics, 2nd ed., Wiley, 1971, pp. 490, 512.

    Google Scholar 

  23. Meyers, M. A., and Carvalho, M. S. Mat. Sci. Eng., 24 (1976), 131.

    Google Scholar 

  24. Critescu, N. Dynamic Plasticity, Interscience Publishers, New York, 1967.

    Google Scholar 

  25. Abou-Sayed, A. S. Analysis of Combined Pressure-Shear Waves in an Elastic/Visco-Plastic Material, M.Sc. Thesis, Brown U., 1972.

    Google Scholar 

  26. Abou-Sayed, A. S. Analytical and Experimental Investigation of Pressure-Shear Waves in Solids, Ph.D. Thesis, Brown U., 1975.

    Google Scholar 

  27. AbouSayed, A. S., Clifton, R. J., and Hermann, L. Exptl. Meek, (1976) 127.

    Google Scholar 

  28. Graham, R. A., and Asay, J. R. High Temp-High Press., 10 (1978), 355.

    Google Scholar 

  29. DeCarli, p. S., and Meyers, M. A. Source cited in ref. 21, p. 341.

    Google Scholar 

  30. Orava, R. N., and Wittman, R. H. Proc. 5th Intl. Conf High Energy Rate Fabrication, U. of Denver, Colorado, 1975, P. 1.1.1.

    Google Scholar 

  31. Ezra, A. A. ed., Principles and Practice of Explosive Metalworking, Industrial Newspapers Ltd., London, 1973.

    Google Scholar 

  32. Taylor, G. I. J. Inst. Civil Engrs., 26 (1946), 486.

    Google Scholar 

  33. Rakhmatulin, K. A. Appl. Math, and Mech., 9 (1945), No. 1.

    Google Scholar 

  34. Pochammer, L. J. reine angew. Math., 81 (1876), 324.

    Google Scholar 

  35. Chree, C. Trans. Camb. Phil. Soc., 14 (1889), 250.

    ADS  Google Scholar 

  36. Ting, T. C. T., and Nan, N. Trans. ASME, J. Appl. Meek, 36, (1969), 189.

    ADS  MATH  Google Scholar 

  37. Bleich, H. H., and Nelson, I. Trans. ASME, J. Appl. Meek, 33, (1966), 149.

    ADS  MATH  MathSciNet  Google Scholar 

  38. Lee, E. H. J. Appl. Meek 36 (1969), 1.

    ADS  MATH  Google Scholar 

  39. Clifton, R. J. Plastic waves: theory and experiment, in Mechanics Today, ed. S. Nemat-Nasser, Vol. 1, Pergamon Press, 1972.

    Google Scholar 

  40. Hirth, J. P. Met Trans., 9A (1978), 401.

    Google Scholar 

  41. National Materials Advisory Board Report NMAB-356, 1980, National Academy of Sciences, 1980.

    Google Scholar 

  42. Hopkinson, B. Roy. Soc. Phil. Trans., A213 (1914), 437.

    ADS  Google Scholar 

  43. Davies, R. M. Roy. Soc. Phil. Trans., A240 (1948), 375.

    ADS  Google Scholar 

  44. Kolsky, H. Proc. Roy. Soc. London, 62B (1949), 676.

    Google Scholar 

  45. Rankine, W. J. M. Phil. Trans. Roy. Soc., London, 160 (1870), 270.

    Google Scholar 

  46. Hugoniot, H. J. J. UEcole Poly technique, 58 (1889), 3.

    Google Scholar 

  47. Rice, M. H., Mcqueen, R. J. and Walsh, J. M. Compression of Solids by Strong Shock Waves, in Solid State Physics, Vol. 6, p. 1, Academic Press, New York (1958).

    Google Scholar 

  48. van Thiel, M. Compendium of Shock Wave Data, UCRL-50108, Lawrence Radiation Laboratory, Univ. of California, 1966.

    Google Scholar 

  49. McQueen, R. J. Source cited in ref. 14, p. 293.

    Google Scholar 

  50. Mcqueen, R. J. and Marsh, S. P. J.A.P., 31, (1960), 1253.

    Google Scholar 

  51. Duvall, G. E. Source cited in ref. 8, p. 481.

    Google Scholar 

  52. McQueen, R. J., Marsh, S. P., Taylor, J. W., Fritz, J. N. Source cited in ref. 14, p. 293.

    Google Scholar 

  53. Meyers, M. A. Thermomechanical Processing of a Nickel-Base Superalloy by Cold Rolling and Shock-Wave Deformation, Ph.D. Thesis, U. of Denver, Colorado, 1974.

    Google Scholar 

  54. Duvall, G. E., and Graham, R. A. Rev. Modern Phys., 49 (1977), 523.

    ADS  Google Scholar 

  55. Meyers, M. A., and Murr, L. E. Source cited in ref. 21, p. 487.

    Google Scholar 

  56. Von Neumann, J., and Richtmyer, R. D. J. Appl. Phys., 21 (1950), 2322.

    Google Scholar 

  57. Drummond, W. E. J. Appl. Phys., 29 (1958), 167.

    ADS  MATH  Google Scholar 

  58. Bertholf, L. D., and Benzley, S. E. TOODYII, A Computer Program for Two-Dimensional Wave Propagation, Sandia Laboratories Research Laboratory SC-RR-68–41 (1968).

    Google Scholar 

  59. Lawrence, R. J. WONDY III — A Computer Program for One-Dimensional Wave Propagation, Sandia Laboratories Development Report SC-DR-70–715 (1970).

    Google Scholar 

  60. Dienes, J. K., and Walsh J. M. Source cited in ref. 14, p. 45.

    Google Scholar 

  61. Curran, D. R., Seaman, L., and Shockey, D. A. Physics Today, Jan., 1977, 46.

    Google Scholar 

  62. Seaman, L., Tokheim, R., and Curran, D. Computational Representation of Constitutive Relations for Porous Material, S.R.L Report DNA 3412F, May 1974.

    Google Scholar 

  63. Hoenig, C., Holt, A., Finger, M., and Kuhl, W. Proc. 5th Intl. Conf High Energy Rate Fabrication, U. of Denver, Colorado, June 1974, p. 6.3.1.

    Google Scholar 

  64. Curran, D. R. J.A.P., 34, 2677.

    Google Scholar 

  65. Erkman, J. O., Christensen, A. B., and Fowles, G. R. Attenuation of Shock Waves in Solids, Technical Report No. AFWL-TR-66–72, Stanford Research Institute, Air Force Weapons Laboratory, May, 1966.

    Google Scholar 

  66. Rempel, J. R., Schmidt, D. N., Erkman, J. O., and Isbell, W. M. Shock Attenuation in Solid and Distended Materials, Standford Research Institute, Technical Report No. WL-TR-65–119, Air Force Weapons Laboratory, February, 1966.

    Google Scholar 

  67. Erkman, J. O., and Christensen, A. B. J.A.P., 38 (1967) 5395.

    Google Scholar 

  68. Hsu, C Y., Hsu, K. C., Murr, L. E. and Meyers, M. A. Source cited in ref. 21, p. 433.

    Google Scholar 

  69. Dieter, G. E. Mechanical Metallurgy, 2nd ed., McGraw-Hill (1976), p. 169.

    Google Scholar 

  70. Kressel, H., and Brown, N. J. J. Appl. Phys., 38 (1967), 1618.

    ADS  Google Scholar 

  71. Meyers, M. A. In Strength of Metals and Alloys, Vol. I., eds. P. Haasen, V. Gerold, and G. Kostorz, Pergamon Press, New York, (1979), p. 549.

    Google Scholar 

  72. Taylor, J. W., and Rice, M. H. J. Appl. Phys. 34 (1963), 364.

    ADS  Google Scholar 

  73. Taylor, J. W. J. Appl. Phys. 36 (1965), 3146.

    ADS  Google Scholar 

  74. Johnson, W. G., and Gilman, J. J. J. Appl. Phys., 30 (1959), 129.

    ADS  Google Scholar 

  75. Barker, L. M., Butcher, B. M., and Karnes, C. H. J. Appl. Phys., 37 (1966), 1989.

    Google Scholar 

  76. Holland, J. R. Acta Met., 15 (1967), 691.

    Google Scholar 

  77. Kelly, J. M., and Gillis, P. P. J. Appl. Phys., 38 (1967), 4044.

    ADS  Google Scholar 

  78. Conrad, H., and Wiedersch, H. Acta Met. 8 (1960), 128.

    Google Scholar 

  79. Johnson, J. N. J. Appl. Phys., 40 (1969), 2287.

    Google Scholar 

  80. Rohde, R. W. Acta Met., 17 (1969), 353.

    Google Scholar 

  81. Meyers, M. A. Mat. Sci. Eng., 30 (1977), 99.

    Google Scholar 

  82. Jones, O. E., and Holland, J. R. Acta Met. 16 (1968), 1037.

    Google Scholar 

  83. Zener, C., and Hollomon, J. H. J. Appl. Phys., 15 (1944), 22.

    ADS  Google Scholar 

  84. Recht, R. F. J. Appl. Meek, 31 (1964), 189.

    ADS  Google Scholar 

  85. Culver, R. S. Source cited in ref. 20, p. 519.

    Google Scholar 

  86. Rogers, H. C. Ann. Rev. Mater. Sci., 9 (1979), 283.

    ADS  Google Scholar 

  87. Olson, G. B., Mescall, J. F., and Azrin, M. Source cited in ref. 21, p. 221.

    Google Scholar 

  88. Yellup, J. M., and Woodward, R. L. Res Mechanica, 1 (1980), 41.

    Google Scholar 

  89. Meyers, M. A. Mater. Sci. Eng., 51 (1981), 261.

    Google Scholar 

  90. Murr, L. E., and Kuhlmann-Wilsdorf, D. Acta Met., 26 (1978), 849.

    Google Scholar 

  91. Meyers, M. A. Met. Trans., 8A (1977), 1641.

    Google Scholar 

  92. Murr, L. E. Source cited in ref. 21, p. 753.

    Google Scholar 

  93. Appleton, A. S., and Waddington, J. S. Acta Met., 12 (1963), 681.

    Google Scholar 

  94. Marsh, E. T., and Mikkola, D. E. Scripta Met., 10 (1976), 851.

    Google Scholar 

  95. Meyers, M. A., Kestenbach, H-J., and Soares, C.A.O. Mat Sci. Eng., 45 (1980), 143.

    Google Scholar 

  96. Koul, M. K., and Breedis, J. F. In The Science, Technology, and Application of Titanium, eds. R. I. Jaffee and N. E. Promisel, Pergamon, Oxford, 1978, p. 817.

    Google Scholar 

  97. Murr, L. E., and Galbraith, J. J. Mtls. Sci., 10 (1975), 2025.

    ADS  Google Scholar 

  98. Smith, C. S. Trans. AIME, 212 (1958), 574.

    Google Scholar 

  99. Hornbogen, E. Acta Met., 10 (1962), 978.

    Google Scholar 

  100. Meyers, M. A. Scripta Met., 12 (1978), 21.

    Google Scholar 

  101. Hirth, J. P. and Lothe, J. The Theory of Dislocations, McGraw-Hill, New York, (1968), p. 689.

    Google Scholar 

  102. Kazmi, B., and Murr, L. E. Source cited in ref. 21, p. 733.

    Google Scholar 

  103. Mogilevsky, M. A. Proc. Symp. on High Dynamic Pressure, Paris, August (1978).

    Google Scholar 

  104. Mogilevsky Source cited in ref. 21, p. 531.

    Google Scholar 

  105. Weertman, J. Source cited in ref. 21, p. 469.

    Google Scholar 

  106. Meyers, M. A. Proc. ICM II, Boston, Mass., August 16–20, 1976, p. 1804.

    Google Scholar 

  107. Murr, L. E. Inal, O. T., and Morales, A. A. Appl. Phys. Letters, 28 (1976), 432.

    ADS  Google Scholar 

  108. Graham, R. A. Source cited in ref. 21, p. 375.

    Google Scholar 

  109. Nolder, R. L., and Thomas, G. Acta Met., 11 (1963), 994.

    Google Scholar 

  110. Nolder, R. L., and Thomas, G. Acta Met., 12 (1964), 227.

    Google Scholar 

  111. Greulich, F., and Murr, L. E. Mater. Sci. Engr., 39 (1978), 81.

    Google Scholar 

  112. Deangelis, R. J., and Dohen, J. P. J. Metals, 15 (1963), 681.

    Google Scholar 

  113. Champion, A. R. and Rohde, R. W. J. Appl. Phys., 41 (1970), 2213.

    ADS  Google Scholar 

  114. Murr, L. E., and Staudhammer, K. P. Mater. Sci. Engr., 20 (1974), 95.

    Google Scholar 

  115. Stone, G. A., Orava, R. H., Gray, G. T., and Pelton, A. R. An Investigation of the Influence of Shock-Wave Profile on the Mechanical and Thermal Responses of Poly crystalline Iron, Final Technical Report, U.S. Army Research Office, Grant No. DAA629–76-0181, p. 30, 1978.

    Google Scholar 

  116. Rohde, R. W. Acta Met., 17 (1969), 353.

    Google Scholar 

  117. Rohde, R. W., Leslie, W. C., and Glenn, R. C. Met. Trans., 3A (1972), 363.

    Google Scholar 

  118. Mahajan, S. Phys. Stat. Sol., 33a (1969), 291.

    ADS  Google Scholar 

  119. Wongwiwat, K., and Murr, L. E. Mater. Sci. Engr., 35 (1978), 273.

    Google Scholar 

  120. Verbraak, C. A. Science and Technology of W, Ta, Mo, Nb, and Their Alloys, Pergamon Press, N.Y., 1964, p. 219.

    Google Scholar 

  121. Marcinkowski, M. J., and Lipsitt, H. A. Acta Met., 10 (1962), 951.

    Google Scholar 

  122. Hall, D. Acta Met., 9 (1961), 191.

    Google Scholar 

  123. Kestenbach, H-J., and Meyers, M. A. Met. Trans., 7A (1976), 1943.

    Google Scholar 

  124. Cottrell, A. H., and Bilby, J. Phil. Mag., 42 (1951), 573.

    MATH  Google Scholar 

  125. Venables, J. A. Phil. Mag., 6 (1961), 379.

    ADS  Google Scholar 

  126. Cohen, J. B., and Weertman, J. Acta Met., 11 (1963), 997.

    Google Scholar 

  127. Sleeswyk, A. W. Acta Met., 10 (1962), 803.

    Google Scholar 

  128. Duvall, G. E., and Graham, R. A. Reviews of Modern Physics, 49 (1977), 523.

    ADS  Google Scholar 

  129. Stein, C. Scripta Met., 9 (1975), 67.

    Google Scholar 

  130. Cohen, M., Olson, G. B., and Clapp, P. C. Proceedings ICOMAT1979, MIT Press, Cambridge, Mass. 1980, p. 1.

    Google Scholar 

  131. Hecker, S. S. Private communication, Los Alamos National Laboratory (1981).

    Google Scholar 

  132. Patel, J. R., and Cohen, M. Acta Met., 1 (1953), 531.

    Google Scholar 

  133. Rohde, R. W., Holland, J. R. and Graham, R. A. Trans. Met. Soc. AI ME, 242 (1968), 2017.

    Google Scholar 

  134. Meyers, M. A., and Guimaräes, J. R. C. Mater. Sci. Engr., 24 (1976), 289.

    Google Scholar 

  135. Meyers, M. A. Met. Trans., l0A (1979), 1723.

    Google Scholar 

  136. Olson, G. B., and Cohen, M. J. Less Common Metals, 28 (1972), 107.

    Google Scholar 

  137. Guimaräes, J. R. C., Gomes, J. C., and Meyers, M. A. Suppl. to Trans. J.I.M., 1976 (1741).

    Google Scholar 

  138. Staudhammer, K. P., Frantz, C. E., Hecker, S. S., and Murr, L. E. Source cited in ref. 21, p. 91.

    Google Scholar 

  139. Meyers, M. A. Mater. Sci. Engr., 30 (1977), 99.

    Google Scholar 

  140. Das, G., and Radcliffe, S. V. Phil. Mag., 20 (1969), 589.

    ADS  Google Scholar 

  141. Leslie, W. C., Stevens, D. W., and Cohen, M. In High-Strength Materials, V. F. Zackay (ed.), John Wiley and Sons, New York, 1965, p. 382.

    Google Scholar 

  142. Edington, J. W. Phil. Mag., 19 (1969), 1189.

    ADS  Google Scholar 

  143. Edington, J. W. In Mechanical Behavior of Materials Under Dynamic Loads, ed. U.S. Lindholm, Springer, Berlin, 1968, 191.

    Google Scholar 

  144. Nye, J. F. Physical Properties of Crystals, Oxford U. Press, London, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Meyers, M.A., Murr, L.E. (1983). Propagation of Stress Waves in Metals. In: Blazynski, T.Z. (eds) Explosive Welding, Forming and Compaction. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9751-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9751-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9753-3

  • Online ISBN: 978-94-011-9751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics