Skip to main content

Sea-surface Variations and Energy: Tidal and Wave Power

  • Chapter
Sea Surface Studies
  • 128 Accesses

Abstract

The movements of the sea surface are a result of the various external or ‘body’ forces acting upon the mass of the ocean (see this vol., Chappell, Ch. 2 and Peltier, Ch. 3). These movements (waves and tides) may be characterised by the periodicities associated with them which can vary from a few seconds to several days. Vertical surface-water movements and the associated subsurface particle motions represent a reservoir of stored energy. This energy has a lifetime equal to the lifetime of the solar system and is inexhaustible. Various estimates have been made as to the size of this energy resource, and Isaacs (1979) shows that the quantities of energy available from all sea-surface movements would amount to the earth’s total energy requirements in the year 2000. A number of schemes have been proposed for the harnessing of this vast power resource but many show little understanding of the engineering problems involved. It is proposed to discuss this resource here under two main headings based on the two major groups of cyclic sea-surface movements. First are the long period motions associated with Tides which have a dominant periodicity of around 12.5 hours and secondly the Wind Generated Waves having periods varying between four and twenty seconds. Within each section a brief introduction to the basic physics will be presented to give an understanding of the processes involved. There will not be any detailed mathematics as only the principles are important. Only a small number of formulae will be given and the reader is directed to appropriate texts for proof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airy, G.B. (1861) ‘Tides and Waves’, Encyclopaedia Metropolitana, 5, 241–396.

    Google Scholar 

  • Allen, J. (1947), Scale Models in Hydraulic Engineering, Longman, London.

    Google Scholar 

  • Ambli, N., Bonke, K., Malmo, O and Reitan, A. (1982) ‘The Kvaemer multiresonant owe, in H. Berge (ed.), Wave Energy Utilisation, Proc. Second Int. Symp. on Wave Energy Utilisation, Trondheim, Tapir Press, Trondheim, pp. 275–96.

    Google Scholar 

  • Anon. (1982) ‘Higher nuclear power costs favour tidal scheme’, Water Power and Dam Construction, March issue, 5.

    Google Scholar 

  • Banal, M. and Bichon, A. (1981) Tidal energy in France. The Ranee tidal power station: some results after 15 years of operation’, in Proc. Second Int. Conf. on Wave and Tidal Energy, Cambridge, UK, British Hydromechanics Res. Assoc., Cranfield, pp. BM-B1–11.

    Google Scholar 

  • Barber, N.F. (1963) Water Waves, Wykeham Publications, London.

    Google Scholar 

  • Bellamy, N.W. (1978) The Loch Ness trials of the DUCK’, Proc. Heathrow Wave Energy Conference, HMSO, London, pp. 120–30.

    Google Scholar 

  • Bellamy, N.W. (1982) ‘Development of the SEA “Clam” wave energy convertor’, in H. Berge (ed.). Wave Energy Utilisation, Proc. Second Int. Symp. on Wave Energy Utihsation, Trondheim, Tapir Press, Trondheim, pp. 175–90.

    Google Scholar 

  • Berge, H. (1982) Wave Energy Utilisation, Proc. Second Int. Symp. on Wave Energy Utilisation, Trondheim, Tapir Press, Trondheim.

    Google Scholar 

  • Bernstein, L.B. (1974) ‘Kislogubskaya: a small station generating great expectations’, Water Power, 26, 172–7.

    Google Scholar 

  • BHRA (1978) Proceedings of First International Conference on Wave and Tidal Energy, Cambridge, UK, British Hydromechanics Res. Ass., Cranfield.

    Google Scholar 

  • BHRA (1982) Proceedings of Second International Conference on Wave and Tidal Energy, Cambridge, UK, British Hydromechanics Res. Ass., Cranfield.

    Google Scholar 

  • Bruun, P. (1980) Port Engineering, Gulf Pub. Co., Houston.

    Google Scholar 

  • Budal, K. and Falnes, J. (1979) ‘Interacting point absorbers with controlled motion’, in B. Count (ed.), Power From the Sea, Academic Press, London and New York, pp. 381–401.

    Google Scholar 

  • Budal, K, and Falnes, J. (1983) ‘Status 1983 of the Norwegian Buoy Project: Open report’, Norwegian Tech. Hogescole (unpublished report).

    Google Scholar 

  • Charlier, R.H. (1978) ‘Tidal power plants: sites, history and geographical distribution’, in Proc. First Int. Conf. on Wave and Tidal Energy, British Hydromechanics Res. Ass., Cranfield, pp. Al-l-Bl-1.

    Google Scholar 

  • Clare, R. and Oakley, A.J. (1981) ‘Towing and Positioning of caissons in a tidal barrage’, inProc. Second Int. Conf on Wave and Tidal Energy, Cambridge, UK, British Hydromechanics Res. Ass., Cranfield, pp. 177–91.

    Google Scholar 

  • Clark, R.H. (1977) Re-assessment of Fundy Tidal Power: A Report of the Bay of Fundy Tidal Power Review Board and Management Committee, Ministry of Supply and Services, Ottawa.

    Google Scholar 

  • Count, B. (ed.) (1980) Power from Sea Waves, Academic Press, London and New York.

    Google Scholar 

  • Count, B, and Evans, D.V. (1984) ‘The harbour concept in wave energy’, in Energy Options, Proc. Fourth Int. Conf. on Energy Options, lEE Publication 233, Peter Peregrinus, London, pp. 211–15.

    Google Scholar 

  • Count, B, Fry, R. and Haskell, J. (1983) ‘An experimental investigation of the harbor concept in wave energy’, CEGB Report TRPD/M/1298/N82, Marchwood Engineering Laboratories, Southampton.

    Google Scholar 

  • Damy, G. (1982) ‘Production d’énergie ä partir de la houle. Bilan provisoire après 2 ans de déroulement du programme’, Rapport TD1/CCTRME/82–31/GD-PV CNEXO, Brest (unpublished report).

    Google Scholar 

  • Damy, G, and Gauthier, M. (1981) ‘Production d’énergie ä partir de la houle’, CNEXO, Brest (unpublished report).

    Google Scholar 

  • Darwin, G.H. (1898) The Tides and Kindred Phenomena of the Solar System, Greenman, San Francisco.

    Google Scholar 

  • Defant, A. (1961) Physical Oceanography, 2 vols, Pergamon Press, London.

    Google Scholar 

  • Derbyshire, E., Gregory, K.J. and Hails, J.R. (1979) Geomorphological Processes, Butterworth, London.

    Google Scholar 

  • Douma, A., Stewart, G.D. and Meier, W. (1982) ‘Straflo turbine at Annapolis Royal: first tidal power plant in the Bay of Fundy’, Escher Wyss News, 1/1981–1/1982, 3–10.

    Google Scholar 

  • Elliot, G. (1984) ‘The NEL Breakwater — Britain’s proposed first wave power station’, in Energy Options, Proc. Fourth Int. Conf. on Energy Options, lEE Pubhcation 233, Peter Peregrinus, London, pp. 202–6.

    Google Scholar 

  • Eurocean, (1979) Report No. 1, Eurocean, Monaco.

    Google Scholar 

  • Evans, D.V. (1976) ‘Wave power absorption by oscillating bodies’, J. Fluid Mechanics, 77, 1–25.

    Article  Google Scholar 

  • Gibrat, R. (1966) L ‘Energie des marées. Presses Universitaires de France, Paris.

    Google Scholar 

  • Gibson, R.A. and Wilson, E.M. (1978) ‘Studies in retiming tidal energy’, in Proc. First Int. Conf. on Wave and Energy, Cambridge, UK, British Hydromechanics Res. Ass., Cranfield, pp. H1-H21.

    Google Scholar 

  • Grove-Palmer, C.O.J. (1982) ‘Wave energy in the UK: a review of the programme June, 1975-March, 1982’, in Berge, H. (ed.). Wave Energy Utilisation, Proc. Second Int. Symp. on Wave Energy Utilisation, Trondheim, Tapir Press, Trondheim, pp. 23–54.

    Google Scholar 

  • Hails, J.R. (1977) ‘Applied geomorphology in coastal zone planning and management’, in J.R. Hails (ed.). Applied Geomorphology: A Perspective of the Contribution of Geomorphology to Interdisciplinary Studies and Environmental Management, Elsevier, Amsterdam, pp. 317–68.

    Google Scholar 

  • Hails, J.R. and Carr, A. (eds) (1975) Nearshore Sediment Dynamics and Sedimentation: An Interdisciplinary Review, Wiley, London.

    Google Scholar 

  • Harris, R.I. and Highgate, D.J. (1978) ‘Energy supplies for remote communities’ in Proc. Wind, Wave and Water Conference, Dublin 1978, Paper 2, Session 2, Irish Management Inst., Dublin.

    Google Scholar 

  • Harvey, J.G. (1976) Atmosphere and Ocean: Our Fluid Environment, Artemis Press, Horsham.

    Google Scholar 

  • Heathrow Conference (1978) Proceedings of Wave Energy Conference, HMSO, London.

    Google Scholar 

  • Hendershott, M.C. (1977) ‘Numerical models of ocean tides’, in D. Goldberg, I.N. McCave, J.J. O’Brien and J.H. Steele (eds). The Sea, 6, Wiley-Interscience, New York, pp. 47–95.

    Google Scholar 

  • Hendershott, M.C. (1982) ‘The effect of solid earth deformations on global area tides’, Geophys. J. Roy. Astron. Soc., 29, 389–403.

    Article  Google Scholar 

  • lEE (1984) Energy Options, Proceedings of the Fourth International Conference on Energy Options, lEE Publication 233, Peter Peregrinus, London.

    Google Scholar 

  • Isaacs, J.D. (1979) ‘Ideas and some developments of wave power conversion’, in Proc. First Int. Conf on Wave Energy Utilisation, Gothenburg, Chalmers University, Gothenburg, pp. 204–22.

    Google Scholar 

  • Ishii, S., Miyazaki, T., Masuda, Y. and Kai, G. (1982) ‘Reports and future plans for the Kaimei project’, in H. Berge (ed.). Wave Energy Utilisation, Proc. Second Int. Symp. on Wave Energy Utilisation, Trondheim, Tapir Press, Trondheim, pp. 305–21.

    Google Scholar 

  • Iversen, L.C. and Lillebekken, P.M. (1983) ‘Buoy of Type N2 in the sea’. Report Inst, for Experimental Physics, NTH, Trondheim, Norway (unpublished report).

    Google Scholar 

  • Kinsman, B. (1965) Wind Waves, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Laplace, P.S. (1799) Traité de Méchanique Céleste, Crapelet, Paris.

    Google Scholar 

  • Leliavsky, S. (1982) Hydro-electric Engineering for Civil Engineers, Chapman & Hall, London.

    Google Scholar 

  • Ley, W. (1954) Engineers Dreams, Viking Press, New York.

    Google Scholar 

  • Long, A.E. (1978) ‘The Belfast Device’, in Heathrow Wave Energy Conference, HMSO, London, pp. 61–3.

    Google Scholar 

  • McCormick, M. (1978) ‘Wave energy conversion in a random sea’, in Proc, Thirteenth Intersociety Energy Conversion Conference, San Diego, Calif., Marine Tech. Soc., pp. 63–71.

    Google Scholar 

  • McCormick, M. (1981) Ocean Wave Energy Conversion, Wiley, Chichester and New York.

    Google Scholar 

  • McMillan, D.H. (1966) The Tides, C.R. Books, London.

    Google Scholar 

  • Masuda, Y. (1971) ‘Wave activated generator for robot weather buoy and other use’, Colloq, Int. sur VExploitation des Océans, Bordeaux, France, V-72–05, 1–17.

    Google Scholar 

  • Masuda, Y. (1972) ‘Study of wave activated generators and future view as an island power source’, in Second Int. Ocean Development Conference, Tokyo, Japan, Soc. of Engineers, Tokyo, pp. 38–42.

    Google Scholar 

  • Mehlum, E. (1982) ‘Recent developments in the focusing of wave energy’, in Berge, H. (ed.). Wave Energy Utilisation, Proc. Second Int. Symp. on Wave Energy Utilisation, Trondheim, Tapir Press, Trondheim, pp. 419–40.

    Google Scholar 

  • Mehlum, E. and Stamnes, J. (1979) ‘Power production based on focussing of swells’. First Int. Conf on Wave Energy Utilisation, Gothenburg, Chalmers University, Gothenburg, pp. 29–35.

    Google Scholar 

  • Meir, R. (1978) ‘The development of the oscillating water column’, inProc. of the Heathrow Wave Energy Conference, HMSO, London, pp. 35–44.

    Google Scholar 

  • Miyazaki, T., Yokomizo, H., Hotta, H. and Washio, Y. (1983) ‘A study of phase control of air flow in order to increase output power of OWC wave generators’, Japan Marine Science Technology Centre, Natsushima, Japan (unpublished report).

    Google Scholar 

  • Mogridge, G.R. (1980) A Review of Wave Power Technology, Report LTR-HY- 74, NRC, Ottawa.

    Google Scholar 

  • Mollison, D. (1980) ‘Prediction of device performance’, in Count, B. (ed.). Power from Sea Waves, Academic Press, London and New York, pp. 135–74.

    Google Scholar 

  • Moody, G. (1979) ‘NEL oscillating water column: recent developments’, in First Int. Conf. on Wave Energy Utilisation, Gothenburg, Chalmers University, Gothenburg, pp. 283–97.

    Google Scholar 

  • Moody, G, and Elliot, G. (1982) ‘The development of the NEL Breakwater WEC’, in H. Berge (ed.). Wave Energy Utilisation, Proc. Second Int. Symp. on Wave Energy Utilisation, Trondheim, Tapir Press, Trondheim, pp. 421–51.

    Google Scholar 

  • NEL (1981), ‘Progress report on the floating attenuator design’. National Engineering Laboratories, East Kilbride, (unpublished report).

    Google Scholar 

  • Neumann, C. and Pierson, W.J. (1966) Principles of Physical Oceanography, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Northern Ireland Economic Council (1981) ‘Strangford Lough tidal energy’. Northern Ireland Economic Council Rept. 24, 1–56.

    Google Scholar 

  • Norwave (1983) ‘Wave Track — a system for wave refraction calculation’, Norwave Company Report, Oslo (unpublished report).

    Google Scholar 

  • Palme, A. (1920) ‘A wave motion turbine’. Power 52, 18, 700–1.

    Google Scholar 

  • Pethick, J. (1984) An Introduction to Coastal Geomorphology, Edward Arnold, London.

    Google Scholar 

  • Pleass, C.M. (1978) ‘Use of a wave power system for desalination’, inProc. First Int. Conf on Wave and Tidal Energy, Cambridge, UK, Paper Dl, British Hydromechanics Res. Ass., Cranfield.

    Google Scholar 

  • Richard, J. (1933) ‘Sur Tutilisation des mouvements de la mer par TOndo-pompe’, Bull. Inst. d’Océanographique Monaco, 625, 2–14.

    Google Scholar 

  • Romanovksy, P. (1950) ‘L’Energie des mers: est-elle utiHsable?’, Science et Vie, May issue, 279–83.

    Google Scholar 

  • Royal Ministry for Petroleum and Energy (1982) Nye Fornybare Energikilder i Norge Stortinsmelding, White Paper to Norwegian Parliament, Govt. Publ. Office, Oslo.

    Google Scholar 

  • Salter, S.H. (1974) ‘Wave Power’, Nature, 249, 720–4.

    Article  Google Scholar 

  • Salter, S.H. (1982) ‘Use of gyros as power take-off, in H. Berge (ed.). Wave Energy Utilisation, Proc. Second Int. Symp. on Wave Energy Utilisation, Trondheim, Tapir Press, Trondheim, pp. 99–116.

    Google Scholar 

  • Savonius, S.J. (1931) The S-Rotor and its applications’. Mechanical Engineering, 53, 333–8.

    Google Scholar 

  • Scobie, G. and Leishman, J.M. (1975) The development of wave power’. Economic Assessment Unit, NEL, East Kilbride, (unpublished report).

    Google Scholar 

  • Scott, D.B. and Greenburg, D.A. (1983) ‘Relative sea-level rise and tidal development in the Fundy tidal system’. Can. J. Earth Sci., 20, 1554–64.

    Article  Google Scholar 

  • SEA (1982) ‘The SEA Lanchester Wave Energy Programme — Bag report’. Report LJD October, Lanchester Polytechnic, Coventry (unpublished report).

    Google Scholar 

  • Settoguchi, M. (1983) ‘Tests on a Wells turbine in oscillating flow’, J. Soc. Naval Architecture of Japan, 152, 84–92.

    Google Scholar 

  • Severn, B. and Campbell, R.O. (1978) ‘Prefabricated caissons for tidal power development’, inProc. First Int. Conf. on Wave and Tidal Energy, Cambridge, UK, British Hydromechanics Res. Assoc., Cranfield, pp. Gl/l-Gl/12.

    Google Scholar 

  • Severn Barrage Committee (1981) Tidal Power from the Severn Estuary, 1 & 2, Energy Paper 46, HMSO, London.

    Google Scholar 

  • Shaw, T.L. (1974) ‘Tidal energy from the Severn estuary’, Nature, 249, 730–3.

    Article  Google Scholar 

  • Simeons, C. (1980) Hydro-power, Pergamon Press, Oxford.

    Google Scholar 

  • Special Committee on Alternative Energy (1981) Energy Alternatives, Report to the Parliament of Canada, Can. Govt. Publ., Ottawa.

    Google Scholar 

  • Sulley, J.L., Moffat, A.M. and Barlow, J.M. (1984) ‘Technical aspects of integrating wind and wave generation sources to small island systems’. Energy Options, Proc. Fourth Int. Conf. on Energy Options, lEE Publication 233, Peter Peregrinus, London, pp. 207–11.

    Google Scholar 

  • Suzuki, M. Arakawa, C. and Tagori, T. (1984) ‘Fundamental studies on the Wells turbine for wave power generation: first report on the effect of solidity and self- starting’, Report No. 83–0070 Dept. of Mechanical Engineering, Tokyo University (unpublished report).

    Google Scholar 

  • Wailes, R. (1941) ‘Tide mills in England and Wales’, Int. Inst. Engineers J. and Record of Trans., 51, 91–114.

    Google Scholar 

  • Wave Energy Utilisation (1979) Proceedings of First Conference on Wave Energy, Gothenburg, Chalmers University, Gothenburg.

    Google Scholar 

  • Wick, G.L. and Castel, D. (1978) ‘The Isaacs wave energy pump - field tests off the coast of Hawaii’, Ocean Engineering, 5, 235–42.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 R.J.N. Devoy

About this chapter

Cite this chapter

Lewis, A.W. (1987). Sea-surface Variations and Energy: Tidal and Wave Power. In: Devoy, R.J.N. (eds) Sea Surface Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1146-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1146-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-1148-3

  • Online ISBN: 978-94-015-1146-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics