Skip to main content

Process Design Aspects of Gas Absorbers

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 72/73))

Abstract

Equipment which is used in contacting a gas with a reactive liquid can be gas absorber or a gas-liquid reactor. This terminology itself shows the interdisciplinary nature of the process which involves both chemical (i.e. reaction kinetics) and physical (molecular diffusion, fluid mechanics etc.) phenomena. Thus the subject does not fall entirely within the province of either the chemist or the conventional engineer. The classical literature on this area (Astarita (1), Danckwerts (2), Sherwood et al. (3) etc.) has mainly dealt with gas absorption, in which the reaction is applied merely to enhance the rate of mass transfer. In such cases, there is also always a physical gas absorption process to refer to and the reactions are usually “fast”. On the other hand, many industrial reactions in organic chemistry such as oxidations and chlorinations (4), are relatively slow and the main emphasis is the conversion of the liquid phase product. Therefore, two approaches may be used to characterize the interaction of mass transfer and chemical reaction between components of a gas and a liquid, one expressing the enhancement effect of a relatively fast reaction on the physical mass transfer leading to the classical concept of the “enhancement factor” (1–3) and a second, a relatively new one, expressing of slowing down of the already slow reaction rate by mass transfer and leading to the “Utilization factor” (5,6).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astarita, G. Mass Transfer With Chemical Reaction (sElsevier Publishers, Amsterdam, 1967).

    Google Scholar 

  2. Danckwerts, P. V. Gas-Liquid Reactions (Mc Graw Hill Co., New York, 1970)

    Google Scholar 

  3. Sherwood, T. K., Pigford, R. L. and C. R. Wilke. Mass Transfer (Mc Graw Hill Co., New York, 1975).

    Google Scholar 

  4. Barona, N. and H. W. Prengle. “Reactor Design”. Hydrocarbon Processing. 52 No: 3 (1973) 63.

    Google Scholar 

  5. Carberry, J. J. Chemical and Catalytic Reaction Engineering. (Mc Grwa Hill Co., New York, 1976).

    Google Scholar 

  6. Froment, G. F. and K. B. Bischoff. Chemical Reactor Analysis and Design (John Wiley and Sons, New York, 1979).

    Google Scholar 

  7. Pavlica, R.T. and J.H. Olson. “Unified design method for continous-contact mass transfer operations” Ind.Enqnq.Chem. 62 No: 12 (1970) 45.

    Google Scholar 

  8. Thoenes, D. “Current problems in the modelling of chemical reactors”. Chem.Enqnq.Sci. 35 (1980) 1840.

    Google Scholar 

  9. Krishna, R. “Interphase Mass Transfer Models” (Proceedings of NATO ASI on “Multiphase Chemical Reactors, Portugal, 1981 ).

    Google Scholar 

  10. Brian, P.L.T., Hurley, H.F. and E.H. Hasseltine. “Gas absorption accompanied by second order chemical reaction”. AIChE J. 7 (1961) 226.

    Article  CAS  Google Scholar 

  11. Porter, K. “The effect of contact time distribution on gas absorption with chemical reaction”.Trans.Instn.Chem.Engrs. 44 (1966) T25.

    CAS  Google Scholar 

  12. Alper, E. “Effect of contact time distribution on gas absorption with chemical reaction” (To be published).

    Google Scholar 

  13. Merchuk, J.C. “Further considerations on the Danckwerts-Gillham method for design of gas absorbers”. AIChE J. 21 (1975) 815.

    Article  CAS  Google Scholar 

  14. Porter, K. and D. Roberts. “Similarities between the effect of different flow pattern on diffusion with chemical reaction near an interface”. Chem.Enqng.Sci. 24 (1969) 695.

    Article  CAS  Google Scholar 

  15. Davidson, S.F. “The hold-up and liquid film coefficient at packed towers. Part II. Statistical models of the random packing”. Trans.Instn.Chem.Engrs. 37 (1959) 2092.

    Google Scholar 

  16. Alper, E. “Gas absorption with second order reaction: Comparison with approximate enhancement factor equations”. Chem. Enqnq.Sci. 28 (1973) 2092.

    Google Scholar 

  17. Kishinevskii, M.K., Kornekko, T.S. and T.M. Popa. “Kinetics of gas absorption”. Theor.Found.Chelm.Eng. 4 (1971) 641.

    Google Scholar 

  18. De Coursey, W.J. “Absorption with chemical reaction: Development of a new relation for the Danckwerts’model”. Chem.Enqnq. Sci. 29 (1974) 1867.

    Google Scholar 

  19. Santiago, M. and I.H. Farina. “Mass transfer with second order chemical reaction. Numerical solution”. Chem.Enqnq.Sci. 25 (1970) 744.

    Article  Google Scholar 

  20. Yeramian, A.A., Gottifredi, J.A. and J.J. Ronco. “Mass transfer with homogeneous second order irreversible reaction. A note on an explicit expression for the reaction rate”. Chem.Engng.Sci. 25 (1970) 1622.

    Google Scholar 

  21. Baldi, G. and S. Sicardi. “A model for mass transfer with or without chemical reaction in packed columns”. Chem.Engng.Sci. 30 (1975) 617.

    Article  CAS  Google Scholar 

  22. Wellek, R.M., Brunson, R.J. and F.H. Law. “Enhancement factors for gas absorption with second order irreversible chemical reaction”. Can.J.Chem.Engng. 56 (1978) 181.

    Article  CAS  Google Scholar 

  23. Abramzon, A.A. and M.V. Ostrovskii. Zh.Prikl.Khim. 36 (1963) 789.

    CAS  Google Scholar 

  24. Goodgame, T. and Sherwood, T.K. “The additivity of resistances in mass transfer between phases”. Chem.Engng.Sci. 3 (1954) 37.

    Article  CAS  Google Scholar 

  25. King, J.C. “The additivity of individual phase resistances in mass transfer operations”. AIChE Jl. 10 (1964) 671.

    Article  CAS  Google Scholar 

  26. Szekely, J. “On the addition of phase resistances”. Chem. Enggngg Sci. 20 (1965) 141.

    Article  CAS  Google Scholar 

  27. Mannford-Doble, M. “Gas absorption in packed columns”. Ph.D. Thesis, Cambridge University (1966)

    Google Scholar 

  28. Hartland, S. and J.C. Mecklenburgh. “The concept of back-mixing”. Chem.Engng.Sci. 23 (1968) 186.

    Article  CAS  Google Scholar 

  29. Mecklenburgh, J.C. “Backmixing and Design: A Review”. Trans. Instn.Chem.Engrs. 52 (1974) 180.

    Google Scholar 

  30. Rosen, A.M. and Krylov, V.S. “Theory of scaling-up and hydrodynamic modeling of industrial mass transfer equipment”. Chem. Engng.J. 71 (1974) 85.

    Article  Google Scholar 

  31. Deans, H.A. and Lapidus, L.“A computational model for predicting and correlating the behaviour of fixed bed reactors: I. Derivation of model for nonreactive systems”. AIChE Jl. 6 (1960) 656.

    Article  CAS  Google Scholar 

  32. Deans, H.A. and L. Lapidus. “A computational model for predicting and correlating the behaviour of fixed bed reactors: II. Extension for chemically reactive systems”. AIChE Jl. 4 (1960) 663.

    Article  Google Scholar 

  33. Nishiwaki, A. and Y. Kato. “Relations between the dispersion model and other models for first order reactions”. Can.J.Chem.Engng. 52 (1974) 276.

    Article  Google Scholar 

  34. Ham, A. and H.S. Coe. “Calculation of extraction in continous agitation”. Chem.Met.Engng. 19 (1918) 663.

    CAS  Google Scholar 

  35. Schwartz, J.G. and G.W. Roberts, J.G. and G.W. Roberts. “An evaluation of models for liquid backmixing in trickle bed reactors”. Ind.Engng.Chem.Proc. Des.Dev. 12 (1973) 262.

    Article  CAS  Google Scholar 

  36. Shah, Y.T., Stiegel, G.J. and M.M. Sharma. “Backmixing in gasliquid reactors”. AIChE Jl. 24 (1978) 369.

    Article  CAS  Google Scholar 

  37. Calo, J. “Multiphase reactor models” (Procegdings of NATO ASI on “Multiphase Chemical Reactors, Portugal, 1980 ).

    Google Scholar 

  38. Sharma, M.M. and P.V. Danckwerts. “Chemical methods of measuring interfacial areas and mass transfer coefficients in two-fluid systems”. Brit.Chem.Engng. 15 No: 4 (1970) 206.

    Google Scholar 

  39. Alper, E, and W.-D. Deckwer. “Absorption with reaction: Design methods and effect of viscosity for packed columns”. (IChemE Jubilee Symposium, EFCE Pub.Series No: 21. London, 1982 ) p. D129.

    Google Scholar 

  40. Alper, E. “Optimum length to diameter ratio of plasctic rings for gas absorption with irreversible chemical reaction”. Chem.Engng.Sci. 34 (1979) 1091.

    Google Scholar 

  41. Alper, E., Deckwer, W.-D. and P.V. Danckwerts. “Comparison of effective interfacial areas with the actual area for gas absorption in a stirred cell”. Chem.Engng.Sci. 35 (1980) 1263.

    Google Scholar 

  42. Mashelkar, R.A. and M.M. Sharma. Mass transfer in bubble and packed bubble columns“. Trans.Instn.Chem.Engrs. 48 (1970) TI62.

    Google Scholar 

  43. Mehta, V.D. and M.M. Sharma. “Mass transfer in mechanically agitated gas-liquid contactors.” Chem.Engng.Sci. 26 (1971) 461.

    Google Scholar 

  44. Ganguli, K.B. “Measurement of H2/edible oil interfacial area in an hydrogenator using a ZiegTer-Natta catalyst”. Ph.D. Thesis, Technische Hogeschool, Delft (1978).

    Google Scholar 

  45. Shende, B.W., Ph.D. Thesis, University of Bombay, India(1975)

    Google Scholar 

  46. Bossier, J.A., Farritor, R.E., Hughmark, G.A. and J.T.G. Kao. “Gas-liquid interfacial area determination for a turbine agitated reactor”. AIChE J1. 19 (1973) 1065.

    Google Scholar 

  47. Sridharan, K. and M.M. Sharma. “New systems and methods for the measurement of effective interfacial area and mass transfer coefficients in gas-liquid contactors”. Chem.Engng.Sci. 31 (1976) 767.

    Article  CAS  Google Scholar 

  48. Morsi, B.E., Midoux, N., Laurent, A. et J.C.Charpentier. “Hydrodynamique et aire interfacials des écoulements gaz-liquide à co-courant vers le bas en lit fixe. Influence de la nature du liquide”. Entropie 16 No: 91 (1980) 39.

    Google Scholar 

  49. Joosten, G.E.H. and Danckwerts, P.V. “Chemical reaction and effective interfacial areas in gas absorption”. Chem.Engng.Sci. 28 (1973) 453.

    Article  CAS  Google Scholar 

  50. Juvekar, V. and M.M. Sharma. “Some spects of process design of gas-liquid reactors”. Trans.Instn.Chem.Engrs. 55 ( 1977 72.

    Google Scholar 

  51. van Krevelen, D.V. and P.T. Hoftlizer.“Graphical design of gas-liquid reactors”. Chem.Engng.Sci. 2 (1953) 145.

    Article  Google Scholar 

  52. Danckwerts, P.V. and Sharma, M.M. “The absorption of carbon dioxide into solutions of alkalis and amines (with some notes on hydrogen sulphide and carbonyl sulphide)”. Chem.Engr. (London) Oct. (1966) CE264.

    Google Scholar 

  53. Kafarov, U.V. and U.A. Reutskii. “New methods for chemical absorber design calculations”. J.Appl.Chem.USSR 45 (1972) 1054.

    Google Scholar 

  54. Jhaveri, A.S. “Kinetics of gas absorption”. Ph.D.Thesis, University of Bombay, India (1968).

    Google Scholar 

  55. Onda, K. “Gas absorption in packed columns”. Mem.Fac.Eng., Nagoya University, 24 No: 2 (1972) 165.

    Google Scholar 

  56. Alper, E. “Auslegung von Füllkörperkblonnen als chemische Absorber durch Simulation in Labormodellen”. Chemie-Ing.Tech. 51 (1979) 1136.

    Google Scholar 

  57. Shende, B.W. and M.M. Sharma. “Mass transfer in packed columns: Cocurrent operation”. Chem.Engng.Sci. 29 (1974) 1763.

    Google Scholar 

  58. Mashelkar, R.A. “Bubble columns”. Brit.Chem.Engng. 15 (1974) 1763.

    Google Scholar 

  59. Todt, J., Lücke, J., Schügerl, K. and A. Renken. “Gas hold-up and longitudinal dispersion on different types of multiphase reactors and their possible applications for microbial processes”. Chem.Engng.Sci. 32 (1977) 369.

    Article  CAS  Google Scholar 

  60. Hagberg, C.G. and F.X. Krupa. Proceedings of the 4th Int. 6th European Symposium on Chemical Reaction Engineering. p. 408. Dechema, Frankfurt (1976).

    Google Scholar 

  61. Mhaskar, R.D. “Effects of backmixing on the performance of bubble column reactors”. Chem.Engng.Sci. 29 (1974) 897.

    Article  CAS  Google Scholar 

  62. Szeri, A., Shah, Y.T. and Madgavkar, A. “Axial dispersion in two phase cocurrent flow with fast and instantaneous reactions”. Chem.Engng.Sci. 31 (1976) 225.

    Article  CAS  Google Scholar 

  63. Deckwer, W.-D. “Non-isobaric bubble columns with variable gas velocity”. Chem.Engng.Sci. 31 (1976) 309.

    Article  CAS  Google Scholar 

  64. Deckwer, W.-D. “Absorption and reaction od isobutene in sulfuric acid”. Chem.Engng.Sci. 32 (1977) 51.

    Article  CAS  Google Scholar 

  65. Kawagoe, M., Nakao, K. and T. Otake. “Design of multistage gasliquid reactor”. Chem.Engng.Japan 5 (1972) 149.

    Article  CAS  Google Scholar 

  66. Danckwerts, P.V. and A.J. Gillham. “The design of gas absorbers. I.Methods for predicting rates of absorption with chemical reaction in packed columns and tests with 1 1/2 in Raschig rings”. Trans.Instn.Chem.Engrs. 44 (1966) T42.

    CAS  Google Scholar 

  67. Danckwerts, P.V. and E. Alper. “Design of gas absorbers: Part III. Laboratory point model of a packed column absorber”. Trans.Instn.Chem.Engrs. 53 (1975) 54.

    Google Scholar 

  68. Alper, E. “Laboratory scale-model of a complete packed column absorber”. Chem.Engng.Sci. 31 (1976) 599.

    Article  CAS  Google Scholar 

  69. Alper, E. “Laboratory models of a packed-Column absorber” Ph.D.Thesis, Cambridge University, England (1972).

    Google Scholar 

  70. Andrew, S.P.S. “Scale up in distillation and absorption”. Proc. of Symposium on “Scale-up, Instn.Chem.Engrs. (1968).

    Google Scholar 

  71. Laurent, A., Fonteix, C. and J.C. Charpentier. “Simulation of a pilot scale, liquid motivated venturi jet scrubber by a laboratory scale model”. AIChE Jl. 26 (1980) 282.

    Article  Google Scholar 

  72. Laurent, A. and J.C. Charpentier. “Anwendung experimenteller Labormodelle bei der Voraussage der Leistung von Gas/FlüssigkeitsReaktoren”. Chemie-Ing.Tech. 53 (1981) 244.

    Article  CAS  Google Scholar 

  73. Alper, E. and W.-D. Deckwer. “Kinetics of absorption of CO2 into buffer solutions containing carbonic anhydrase”. Chem. En n.Sci. 35 (1980) 2147.

    Google Scholar 

  74. Alper, E., Lohse, M. and W.-D. Deckwer. “On the mechanism of enzyme catalyzed gas-liquid reactions: Absorption of CO2 into buffer solutions containing carbonic anhydrase”. Chem.Engng.Sci. 35 (1980) 549.

    Article  CAS  Google Scholar 

  75. Lohse, M., Alper, E., Quicker, G. and W.-D. Deckwer. “Diffusivity and solubility of carbon dioxide in polymer solutions”. Phase Equilibria and Fluid Properties in the Chemical Industry. EFCE Pub. Series No. 11, p. 110 (1980).

    Google Scholar 

  76. Charpentier, J.C. and Laurent, A. “Some considerations and recalls on the design of gas absorbers: Laboratory apparatus to simulate absorber and to predict the effect of chemical reaction”. AIChE Jl. 20 (1974) 1029.

    Google Scholar 

  77. Volgin, B.P., Efimova, T.F. and Gofman, M.S. “Absorption of sulfur dioxide by ammonium sulfite-bisulfite solution in a venture scrubber”. Int.Chem.Engng. 8 (1968) 113.

    Google Scholar 

  78. Alper, E. “Physical absorption of a gas in laboratory models of a packed column”. AIChE Jl. 25 (1979) 545.

    Article  CAS  Google Scholar 

  79. Sherwood, T.K. Proceedings of the 20th Anniversary Symposium “Mass Transfer and Diffusion”, p. 4. University of Houston, Texas, U.S.A. (1973).

    Google Scholar 

  80. de Maria, K. and R.R. White. “Transient response study of gas flowing through irrigated packings”. AIChE Jl. 6 (1960) 473.

    Article  Google Scholar 

  81. Sater, U.E. and O. Levenspiel. “Two-phase flow in packed beds”. Ind.Engng.Chem.Fund. 5 (1966) 86.

    Article  CAS  Google Scholar 

  82. de Waal, K.J.A. and van Mameren, A.C. Proceedings of Symposium on “Transport Phenomena”, Rotenburg,P.A. (Ed.), London, The Instn.Chem.Engrs., p. 60 (1965).

    Google Scholar 

  83. Dunn, W.E., Vermeulen, T., Wilke, C.R. and T.T. Ward. “Longitudinal dispersion in packed gas-absorption columns”. Ind.Engng. Chem.Fund. 16 (1977) 116.

    Article  CAS  Google Scholar 

  84. Lespinasse, B. Rev. IFP, Génie Chimique 11 (1962) 41.

    Google Scholar 

  85. Porter, K.E. and Templemann, J.J. Trans.Instn.Chem.Engrs. 46 (1968) T86.

    Google Scholar 

  86. Gillham, A.J. “Kinetics of gas absorption”. Ph.D.Thesis, Cambridge University, England (1963).

    Google Scholar 

  87. Porter, K.E. Trans.Instn.Chem.Engrs. 46 (1968) T69.

    Google Scholar 

  88. Puranik, S.S. and Vogelpohl, A. “Effective interfacial area in irrigated packed columns”. Chem.Engng.Sci. 29 (1974) 501.

    Article  CAS  Google Scholar 

  89. Charpentier, J.C. “Recent progress in two-phase gas-liquid mass transfer in packed columns”. Chem.Eng.J. II (1976) 161.

    Google Scholar 

  90. Kolev, N. “Wirkungsweise von Füllkörpernschüttungen”. Chemie-Ing Tech. 48 (1976) 1105.

    Google Scholar 

  91. Reiclielt, W. and Blass, F. “Die Berechnung von Füllkörperapparaten bei Gegenstrom von Gas and Flüssigkeit”. Chem.-Ing. Tech. 46 (1974) 171.

    Article  Google Scholar 

  92. Alper, E. “Chemical methods of measuring interfacial areas in two-phase systems”. (Proceedings of NATO ASI on “Two-phase flow and heat transfer, Turkey, 1976 )

    Google Scholar 

  93. Alper, E. “Comments on ”Gas-liquid reactions: Formulation as initial value problems“. Chem.Engng.Sci. 34 (1979) 1076.

    Google Scholar 

  94. Mongers, R.J. and Ponter, A.B. “Effect of viscosity on liquid film resistance to mass transfer in a packed column”. Ind.Enggng.Chem.Process Des.Dev. 19 (1980) 530.

    Article  Google Scholar 

  95. Alper, E. “Measurement of effective interfacial area in a packed-column absorber by chemical methods”. Trans.Instn.Chem. Engrs. 57 (1979) 64.

    CAS  Google Scholar 

  96. Sahay, B.N. and Sharma, M.M. “Effective interfacial area and liquid and gas-side mass transfer coefficients in a packed column”. Chem.Engng.Sci. 28 (1973) 41.

    Article  CAS  Google Scholar 

  97. Linek, V., Krivsky, Z. and P. Hudec. “Effective interfacial area in plastic -packed absorption columns”. Chem.Engng.Sci. 32 (1977) 323.

    Article  CAS  Google Scholar 

  98. Linek, V., Petricek, P., Bense, P. and Z. Krivsky. “Spezifische Phasengrenzfläche und die Stoffübergangskoeffizienten in Absorptionskolonnen mit Füllkörpern aus Kunststoffe”. Verfahrenstechnik 14 (1980) 733.

    Google Scholar 

  99. Linek, V., Stoy, V., Machon, V. and Z. Krivsky. “Increasing the effective interfacial area in plastic absorption columns”. Chem.Engng.Sci. 29 (1974) 1955.

    Google Scholar 

  100. Norman, W.S. Distillation, Absorption and Cooling Towers. (Longmans and Green and Co. ltd., 1960 ).

    Google Scholar 

  101. Sherwood, T.K. and F.A.L. Holloway. “Performance of packed towers: Experimental studies of absorption and desorption”. Trans.Am.Instn.Chem.Engrs. 34 (1940) 21.

    Google Scholar 

  102. Mika, V. “Gas absorption in packed columns”. Collectn.Czech. Commun. 32 (1967) 2933.

    Google Scholar 

  103. Copp, D. and A.B. Pontner. Waerme Stoffübertrag. 5 (1972) 129.

    Google Scholar 

  104. Reiss, C.P. “Cocurrent gas-liquid contacting in packed-columns”. Ind.Engng.Chem.Proc.Des.Dev. 6 (1967) 846.

    Article  Google Scholar 

  105. Mohunta, D., Vaisyanathan, A. and G. Laddha. Indian Chem. Engng. 11 (1965) 73.

    Google Scholar 

  106. Richards, G.M., Ratcliff, G.A. and P.V. Danckwerts. “Kinetics of CO2 absorption. III. First order reaction in a packed column”. Chem.Engng.Sci. 19 (1964) 325.

    Article  CAS  Google Scholar 

  107. Sahay, B.N. and M.M. Sharma. “Letters to the editor”. Chem. Ern ng.Sci. 30 (1975) 325.

    Google Scholar 

  108. Onda, K., Sada, E. and Y.T. Takeuchi. Chem.Engng.Japan 1 (1968) 56.

    Article  CAS  Google Scholar 

  109. Danckwerts, P.V. and Rizvi, S.F. “The design of gas absorbers. Part II. Effective interfacial areas for several types of packing”. Trans.Instn.Chem.Engrs. 49 (1971) 124.

    CAS  Google Scholar 

  110. Vidwans, A.D. and Sharma, M.M. “Gas-side mass transfer coefficient in packed columns”. Chem.Engng.Sci. 23 (1968) 669.

    Article  Google Scholar 

  111. Jhaveri, A.S. and M.M. Sharma. “Effective interfacial area in a packed column”. Chem.Engng.Sci. 23 (1968) 669.

    Article  CAS  Google Scholar 

  112. Rizzuti, L., Augugliaro, V. and Cascio, G.L. “The influence of the viscosity on the effective interfacial area in packed columns”. Chem.Engng.Sci. 36 (1981) 973.

    Article  CAS  Google Scholar 

  113. Alper, E. “The influence of CMC addition on the effective interfacial Area in packed columns” (To be published).

    Google Scholar 

  114. Alper, E. “The influence of viscosity on the volumetric mass transfer coefficient” (To be published).

    Google Scholar 

  115. Stephens, E.J. and G.A. Morris. “Determination of liquid-film absorption coefficients”. Chem.Engng.Prog. 47 (1951) 232.

    CAS  Google Scholar 

  116. Mehta, V.D. and M.M. Sharma. ‘Effect of diffusivity on gas side mass transfer coefficient“. Chem.Engng.Sci. 21 (1966) 361.

    Article  CAS  Google Scholar 

  117. Taecker, R.G. and G.A. Hougen. “Heat, mass transfer of gas film in flow of gases through commercial tower parkings”. Chem. Engng.Pros. 45 (1949) 188.

    CAS  Google Scholar 

  118. Tamir, A. and J.C. Merchuk. “Effect of diffusivity on gas side mass transfer coefficient”. Chem.Engng.Sci. 34 (1979) 1423.

    Google Scholar 

  119. Yadav, G.D. and M.M. Sharma. Effect of diffusivity on true gas-side mass transfer coefficient in a model stirred contactor with a plane liquid interface“. Chem.Engng.Sci. 34 (1979) 1423.

    Google Scholar 

  120. Kolar, V., Broz, Z. and J. Tichy. “Liquid hold-up in gasliquid countercurrent flow through a bed of packing”. Coll.Czech. Chem.Comm. 35 (1970) 3344.

    Article  CAS  Google Scholar 

  121. Tichy, J. “Liquid hold-up in gas-liquid coutercurrent flow through a bed of packing”. Chem.Engng.Sci. 28 (1973) 665.

    Article  Google Scholar 

  122. Buchanan, J.E. “Hold-up in irrigated ring packed towers below the loading point”. Ind.Engng.Chem.Fund. 6 (1967) 400.

    Article  CAS  Google Scholar 

  123. Hofmann, H. “Hydrodynamik, Transportvorgänge und mathematische Modelle bei Rieselreaktoren”. Chemie-Ing.Tech. 47 (1975)821

    Google Scholar 

  124. Shulman, H.L., Ullrich, C.F. and N. Weils. “Performance of packed columns. I. Total, static and operating hold-ups”. AIChE Jl. 1 (1955) 259.

    Article  CAS  Google Scholar 

  125. Shulman, H.C., Ullrich, C.F., Wells, N. and A.Z. Prouix. “Performance of packed columns. 3. Hold-up for aqueous and nonaqueous systems”. AIChE Jl. 1 (1955) 259.

    Article  CAS  Google Scholar 

  126. Mohunta, D.M. and G.S. Laddha, “Prediction of liquid hold-up in random packed beds”. Chem.Engng.Sci. 20 (1965) 1069.

    Google Scholar 

  127. Charpentier, J.C. and M. Favier. “Some liquid hold-up experimental data in trickle bed reactors for foaming and nonfoaming hydrocarbons”. AIChE Jl. 21 (1978) 1213.

    Google Scholar 

  128. Jhaveri, A.S. and M.M. Sharma. “Absorption with fast chemical reaction”. Chem.Engng.Sci. 24 (1969) 189.

    Article  CAS  Google Scholar 

  129. Shafer, D.L., Jones, J.H. and T.E. Daubert. “Simultaneous absorption and chemical reaction of butenes”. Ind.Engng.Chem.Proc. Des.Dev. 13 (1974) 14.

    Article  Google Scholar 

  130. Levenspiel, O. and J.H. Godfrey. “A gradientless contactor for experimental study of interphase mass transfer with/without reaction”. Chem.Engng.Sci. 29 (1974) 1723.

    Google Scholar 

  131. Laurent, A. Ph.D.Thesis, Nancy University, France (1975).

    Google Scholar 

  132. Laurent, A. and J.C. Charpentier. “Le role et utilité des modè les experimentaux de laboratoire dans la prévision des performances d’un réacteur gaz-liquide industriel”. J.Chim.Phys. No: 11 (1977) 1001.

    Google Scholar 

  133. Danckwerts, P.V. and K.M. McNeil. “Kinetics of CO2 absorption into amine solutions”. Trans.Instn.Chem.Engrs. 45 (1967) T32.

    CAS  Google Scholar 

  134. Ouwerkerk, C. “Design for selcetive 9S absorption”. Hydrocarbon Process. April (1978) 89.

    Google Scholar 

  135. Hatcher, W.J. and D.R. Hart. “Reaction and mass transport in two-phase reactors: Sulfonation of benzene”. Chem.Engng.Sci. 35 (1980) 90.

    Article  CAS  Google Scholar 

  136. Krötzsch, P. “Abgasreinigung durch Chemiesorption mittels Strahiwäschern am Beispiel der C12-Absorption in wässrige Natrium Thiosulfat-Lösung”. Chemie-Ing.Tech. 47 (1975) 213.

    Article  Google Scholar 

  137. Kastanek, F., Zahradnik, J., Rylek, M. and J. Kratochvil. “Scaling-up of bubble column reactors on basis of laboratory data”. Chem.Engng.Sci. 35 (1980) 456.

    Article  CAS  Google Scholar 

  138. Mann, R. “Heat and mass transfer in exothermic gas absorption”. (Proceedin’s of NATO ASI on “Mass transfer with chemical reaction in multiphase systems, Turkey, 1981 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alper, E. (1983). Process Design Aspects of Gas Absorbers. In: Alper, E. (eds) Mass Transfer with Chemical Reaction in Multiphase Systems. NATO ASI Series, vol 72/73. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6900-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-6900-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6902-6

  • Online ISBN: 978-94-015-6900-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics