Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 232))

Abstract

The problem of determining rank in the presence of error occurs in a number of applications. The usual approach is to compute a rank-revealing decomposition and make a decision about the rank by examining the small elements of the decomposition. In this paper we look at three commonly use decompositions: the singular value decomposition, the pivoted QR decomposition, and the URV decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Adams, M. F. Griffin, and G. W. Stewart. Direction-of-arrivai estimation using the rank-revealing URV decomposition. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Washington, DC, IEEE, 1991.

    Google Scholar 

  2. T. W. Anderson. Estimation of linear functional relationships: Approximate distributions and connections with simultaneous equations in econometrics. Journal of the Royal Statistical Society, 38, pp 1–31, 1976.

    MATH  Google Scholar 

  3. A. E. Beaton, D. B. Rubin, and J. L. Barone. The acceptability of regression solutions: Another look at computational accuracy. Journal of the American Statistical Association, 71, pp 158–168, 1976.

    Article  MATH  Google Scholar 

  4. D. A. Belsley. Assessing the presence of harmful collinearity and other forms of weak data through a test for signal-to-noise. Journal of Econometrics, 20, pp 211–253, 1982.

    Article  Google Scholar 

  5. D. A. Belsley, A. E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley and Sons, New York, 1980.

    Book  MATH  Google Scholar 

  6. E. Beltrami. Sulle funzioni bilineari. Giornale di Matematiche ad Uso degli Studenti Delle Universita, 11, pp 98–106,1873. An English translation by D. Boley is available as University of Minnesota, Department of Computer Science, Technical Report 90–37, 1990.

    MATH  Google Scholar 

  7. K. N. Berk. Comparing subset regression procedures. Technometrics, 20, pp 1–6, 1978.

    Article  MATH  Google Scholar 

  8. J. Berkson. Are there two regressions. Journal of the American Statistical Association, 45, pp 164–180, 1950.

    Article  MATH  Google Scholar 

  9. D. Bogert and W. R. Burris. Comparison of least squares algorithms. Report ORNL-3499, Neutron Physics Division, Oak Ridge National Laboratory. Vol. 1, Sec. 5.5., 1963

    Google Scholar 

  10. J. R. Bunch and C. P. Nielsen. Updating the singular value decomposition. Numerische Mathematik, 31, pp 111–129, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. F. Chan. Algorithm 581: An improved algorithm for computing the singular value decomposition. ACM Transactions on Mathematical Software, 8, pp 84–88, 1982.

    Article  Google Scholar 

  12. T. F. Chan. An improved algorithm for computing the singular value decomposition. ACM Transactions on Mathematical Software, 8, pp 72–83, 1982.

    Article  MATH  Google Scholar 

  13. T. F. Chan. Rank revealing QR factorizations. Linear Algebra and Its Applications, 88/89, pp 67–82, 1987.

    MathSciNet  Google Scholar 

  14. S. Chandrasekaran and I. Ipsen. Perturbation theory for the solution of systems of linear equations. Research Report YALEU/DCS/RR-866, Department of Computer Science, Yale University, 1991.

    Google Scholar 

  15. S. Chandrasekaran and I. Ipsen. Analysis of a QR algorithm for computing singular values. Research Report YALEU/DCS/RR-917, Department of Computer Science, Yale University, 1992.

    Google Scholar 

  16. R. Choudary, Hanumara, and W. A. Thompson Jr. Percentage points of the extreme roots of a Wishart matrix. Biometrika, 55, pp 505–512, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Comon and G. H. Golub. Tracking a few extreme singular values and vectors in signal processing. Proc. IEEE, 78, pp 1327–1343, 1990.

    Article  Google Scholar 

  18. J. J. M. Cuppen. The singular value decomposition in product form. SIAM Journal on Scientific and Statistical Computing, 4, pp 216–222, 1983. Cited in [42].

    Article  MathSciNet  MATH  Google Scholar 

  19. G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, New Jersey, 1963.

    MATH  Google Scholar 

  20. R. B. Davies and B. Hutton. The effects of errors in the independent variables in linear regression. Biometrika, 62, pp 383–391, 1975.

    MathSciNet  MATH  Google Scholar 

  21. J. Demmel. A Numerical Analyst’s Jordan Canonical Form. PhD thesis, Department of Computer Science, University of California at Berleley, 1983. Center for Pure and Applied Mathematics Technical Report PAM-156.

    Google Scholar 

  22. J. Demmel. On condition numbers and the distance to the nearest ill-posed problem. Numerische Mathematik, 51, pp 251–290, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Demmel. The smallest perturbation of a submatrix which lowers the rank and constrained total least squares problems. SIAM Journal on Numerical Analysis, 24, pp 199–206, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Demmel and B. Kagström. Accurate solutions of ill-posed problems in control theory. SIAM Journal on Matrix Analysis and Applications, 9, pp 126–145, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM Journal on Scientific and Statistical Computing, 11, pp 873–912, 1989.

    Article  MathSciNet  Google Scholar 

  26. A. P. Dempster. Elements of Continuous Multivariate Analysis. Addison-Wesley, Reading, Massachusetts, 1969.

    MATH  Google Scholar 

  27. J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. UNPACK User’s Guide. SIAM, Philadelphia, 1979.

    Book  Google Scholar 

  28. E. M. Dowling, L. P. Ammann, and R. D. DeGroat. A tqriteration based adaptive svd for real time angle and frequency tracking. Erik Johnson School of Engineering and Computer Science, The University of Texas at Dallas. Manuscript submitted to IEEE Transactions on Signal Processing, 1992.

    Google Scholar 

  29. C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1, pp 211–218, 1936.

    Article  MATH  Google Scholar 

  30. K. V. Fernando and B. Parlett. Accurate singular values and differential qd algorithms. Technical Report PAM-554, Department of Mathematics, University of California, Berkeley, 1992.

    Google Scholar 

  31. R. D. Fierro and J. R. Bunch. Multicollinearity and total least squares. Preprint Series 977, Institute for Mathematics and Its Applications, 1992.

    Google Scholar 

  32. H. E. Fleming. Equivalence of regularization and truncated iteration in the solution of ill-posed image reconstruction problems. Linear Algebra and Its Applicaations, 130, pp 133–150, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. G. F. Francis. The QR transformation, parts I and II. Computer Journal, 4, pp 265–271, pp 332–345, 1961, 1962.

    Article  MathSciNet  Google Scholar 

  34. W. A. Fuller. Measurement Error Models. John Wiley, New York, 1987.

    Book  MATH  Google Scholar 

  35. C. F. Gauss. Theoria combinationis observationum erroribus minimis obnoxiae, pars posterior. In: Werke, IV, pp 27–53. Königlichen Gesellshaft der Wissenschaften zu Göttingin (1880), 1823.

    Google Scholar 

  36. G. H. Golub. Numerical methods for solving least squares problems. Numerische Mathematik, 7, pp 206–216, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. H. Golub, A. Hoffman, and G. W. Stewart. A generalization of the Eckart-Young matrix approximation theorem. Linear Algebra and Its Applications, 88/89, pp 317–327, 1987.

    Article  MathSciNet  Google Scholar 

  38. G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. SI AM Journal on Numerical Analysis, 2, pp 205–224, 1965.

    MathSciNet  MATH  Google Scholar 

  39. G. H. Golub, V. Klema, and G. W. Stewart. Rank degeneracy and least squares problems. Technical Report TR-456, Department of Computer Science, University of Maryland, 1976.

    Google Scholar 

  40. G. H. Golub and C. Reinsch. Singular value decomposition and least squares solution. Numerische Mathematik, 14, pp 403–420, 1970. Also in [76, pp.134–151].

    Article  MathSciNet  MATH  Google Scholar 

  41. G. H. Golub and C. F. Van Loan. An analysis of the total least squares problem. SIAM Journal on Numerical Analysis, 17, pp 883–893,1980.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland, 2nd edition, 1989.

    MATH  Google Scholar 

  43. W. B. Gragg and G. W. Stewart. A stable variant of the secant method for solving nonlinear equations. SIAM Journal on Numerical Analysis, 13, pp 880–903, 1976.

    Article  MathSciNet  Google Scholar 

  44. J. P. Gram. Über die Entwicklung reeler Functionen in Reihen mittelst der Methode der kleinsten Quadrate. Journal für die reine und angewandte Mathematik, 94, pp 41–73, 1883.

    MATH  Google Scholar 

  45. P. C. Hansen. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM Journal on Scientific and Statistical Computing, 11, pp 503–518, 1990.

    Article  MATH  Google Scholar 

  46. N. J. Higham. A survey of condition number estimation for triangular matrices. SIAM Review, 29, pp 575–596, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  47. R. R. Hocking. The analysis and selection of variables in linear regression. Biometrics, 32, pp 1–49, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  48. S. D. Hodges and P. G. Moore. Data uncertainties and least squares regression. Applied Statistics, 21, pp 185–195, 1972.

    Article  MathSciNet  Google Scholar 

  49. Y. P. Hong and C.-T. Pan. Rank-revealing QR factorizations and the singular value decomposition. Mathematics of Computation, 58, pp 213–232,1992.

    MathSciNet  MATH  Google Scholar 

  50. A. S. Householder. Unitary triangularization of a nonsymmetric matrix. Journal of the ACM, 5, pp 339–342, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  51. W. Kahan. Conserving confluence curbs illconditioning. Technical Report 6, Computer Science Department, University of California, Berkeley, 1972.

    Google Scholar 

  52. P. S. Laplace. Théoria analytique des probabilities (3rd ed.) premier supplement: Sur l’application du calcul des probabilités a la philosophie naturelle. Oeuvres, v.l. Gauthier-Villars, 1820. Supplement published before 1820.

    Google Scholar 

  53. R. Mathias and G. W. Stewart. A block qr algorithm and the singular value decomposition. Technical Report CS-TR 2626, Department of Computer Science, University of Maryland, College Park, 1992. To appear in Linear Algebra adn Its Applications.

    Google Scholar 

  54. M. Moonen. Jacobi-Type Updating Algorithms for Signal Processing, Systems Identification and Control. PhD thesis, Katholieke Universiteit Leuven, 1990.

    Google Scholar 

  55. M. Moonen, P. Van Dooren, and J. Vandewalle. Combined Jacobi-type algorithms in signal processing. In: R. J. Vaccaro (Ed.), SVD and Signal Processing, II, pp 177–188, Amsterdam, 1991. Elsevier Science Publishers.

    Google Scholar 

  56. M. Moonen, P. Van Dooren, and F. Vanpoucke. On the QR algorithm and updating the SVD and URV decomposition in parallel. Report ESAT Katholieke Universiteit Leuven, 1992.

    Google Scholar 

  57. D. P. O’Leary and J. A. Simmons. A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems. SIAM Journal on Scientific and Statistical Computing, 2, pp 474–489, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Prasac and B. Chandna. Direction-of-arrival estimation using rank revealing QR factorization. IEEE Transactions on Signal Processing, 39, pp 1224–1229, 1991. Citation communicated by Per Christian Hansen.

    Article  Google Scholar 

  59. R. Roy and T. Kailath. ESPRIT-estimation of signal parameters via rotational invariance techniques. In: F. A. Grünbaum, J. W. Helton, and P. Khargonekar (Eds), Signal Processing Part II: Control Theory and Applications, pp 369–411, New York, 1990. Springer.

    Chapter  Google Scholar 

  60. E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil. Entwicklung willkürlichen Funktionen nach System vorgeschriebener. Mathematische Annalen, 63, pp 433–476, 1907.

    Article  MathSciNet  MATH  Google Scholar 

  61. G. N. Stenbakken, T. M. Souders, and G. W. Stewart. Ambiguity groups and testability. IEEE Transactions on Instrumentation, 38, pp 941–947, 1989.

    Article  Google Scholar 

  62. G. W. Stewart. The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM Journal on Numerical Analysis, 17, pp 403–404, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  63. G. W. Stewart. On the invariance of perturbed null vectors under column scaling. Numerische Mathematik, 44, pp 61–65, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  64. G. W. Stewart. Rank degeneracy. SIAM Journal on Scientific and Statistical Computing, 5, pp 403–413, 1984.

    Article  MATH  Google Scholar 

  65. G. W. Stewart. Collinearity and least squares regression. Statistical Science, 2, pp 68–100, 1987.

    Article  MathSciNet  Google Scholar 

  66. G. W. Stewart. Updating a rank-revealing ULV decomposition. Technical Report CS-TR 2627, Department of Computer Science, University of Maryland, 1991.

    Google Scholar 

  67. G. W. Stewart. On the early history of the singular value decomposition. Technical Report CS-TR-2848, Department of Computer Science, University of Maryland, College Park, 1992.

    Google Scholar 

  68. G. W. Stewart. An updating algorithm for subspace tracking. IEEE Transactions on Signal Processing, 40, pp 1535–1541, 1992.

    Article  Google Scholar 

  69. G. W. Stewart. Updating URV decompositions in parallel. Technical Report CS-TR-2880, Department of Computer Science, University of Maryland, College Park, 1992.

    Google Scholar 

  70. G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.

    MATH  Google Scholar 

  71. A. N. Tihonov. Regularization of incorrectly posed problems. Soviet Mathematics, 4, pp 1624–1627, 1963.

    MathSciNet  Google Scholar 

  72. S. Van Huffel. Analysis of the Total Least Squares Problem and Its Use in Parameter Estimation. PhD thesis, Katholeike Universiteit Leuven, 1987.

    Google Scholar 

  73. S. Van Huffel and J. Vandervalle. Analysis and properties of the generalized total least squares problem AX ≈ B when some or all columns in A are subject to error. SIAM Journal on Matrix Analysis and Applications, 10, pp 294–315,1989.

    Article  MathSciNet  MATH  Google Scholar 

  74. S. Van Huffel and J. Vandewalle. The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia, 1991.

    Book  MATH  Google Scholar 

  75. J. M. Varah. A practical examination of some numerical methods for linear discrete ill-posed problems. SIAM Review, 21, pp 100–111, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  76. J. H. Wilkinson and C. Reinsch. Handbook for Automatic Computation. Vol II Linear Algebra. Springer, New York, 1971.

    Google Scholar 

  77. G. Xu and T. Kailath. Fast signal-subspace decomposition — Part I: Ideal covariance matrices. Manuscript submitted to ASSP. Information Systems Laboratory, Stanford University, 1990.

    Google Scholar 

  78. G. Xu and T. Kailath. Fast signal-subspace decomposition — Part II: Sample co-variance matrices. Manuscript submitted to ASSP. Information Systems Laboratory, Stanford University, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stewart, G.W. (1993). Determining Rank in the Presence of Error. In: Moonen, M.S., Golub, G.H., De Moor, B.L.R. (eds) Linear Algebra for Large Scale and Real-Time Applications. NATO ASI Series, vol 232. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8196-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8196-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4246-0

  • Online ISBN: 978-94-015-8196-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics