Skip to main content

Part of the book series: Mathematics and Its Applications (East European Series) ((MAEE,volume 58))

  • 226 Accesses

Abstract

With the introduction of VLSI (Very Large Scale Integration) technology [16], it has been possible for the first time to construct integrated circuits with as many as a million elements on a chip (in an area of approximately 1 cm2). The high degree of parallelism that can be achieved in circuits of such density enables computations to be realized on VLSI chips with extreme speed and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilardi, G. and Sarrafzadeh, M.: ‘Optimal discrete Fourier Transform in VLSI’, in International Workshop on Parallel Computing and VLSI, Amalfi, 1984.

    Google Scholar 

  2. Buzbee, B. L. and Dorr, F. W.: ‘The direct solution of the biharmonic equation on rectangular region and the Poisson equation on irregular regions’, SIAM J. Numer. Anal. 11 (1974) 753–762.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cannon, J. R. and Morandi Cecchi, M.: ‘Numerical experiments on the solution of some biharmonic problems by mathematical programming techniques’,.9 IA AI J. Numer. Anal. 4 (1967) 147–154.

    MathSciNet  MATH  Google Scholar 

  4. Chen, S. C. and Kuck, D. J.: ‘Time and parallel processor bounds for linear recurrence systems’, IEEE Trans. Comp. C-24 (1975) 701–717.

    Google Scholar 

  5. Codenotti, B., Lotti, G. and Romani, F.: ‘VLSI implementation of fast solvers for hand linear systems with constant. coefficient matrix’, Inf. Processing Lett. 21 (1985) 159–163.

    Article  MathSciNet  MATH  Google Scholar 

  6. Codenotti, B. and Lotti, G.: ‘A VLSI fast solvers for tridiagonal linear systems’, Inf. Processing Lett. 23 (1986) 111–1l4.

    Google Scholar 

  7. Ehrlich, L. W.: `Solving the biharmonic equation as coupled finite difference equations’, SIAM J. Numer. Anal. 8 (1971) 278–287.

    MathSciNet  Google Scholar 

  8. Ehrlich, L. W. and Gupta, M. M.: ‘Some difference schemes for the biharmonic equation’, SIAM J. Numer. Anal. 12 (1975) 773–790.

    MathSciNet  MATH  Google Scholar 

  9. Fadeev, D. K. and Fa.deeva, V. N.: Numerical Methods in Linear Algebra (in Russian), Fizmatgiz, Moscow, 1963.

    Google Scholar 

  10. Favati, P., Lotti, G. and Romani, F.: ‘VLSI implementation of the capacitance matrix method’, Integration 11 (1991) 3–9.

    Google Scholar 

  11. Golub, G. H.: `An algorithm for the discrete biharmonic equation’ (personal communication).

    Google Scholar 

  12. Hackbusch, W. and Trottenberg, U. (eds): Multigrid Methods, Lecture Notes in Mathematics 960, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  13. Kung, II. T. and Leiserson, C. E.: ‘Systolic arrays for VLSI’, in Sparse Matrix Symp. Proc., Knoxville, 1978, pp. 256–282.

    Google Scholar 

  14. Leighton, F. T.: ‘New lower bound techniques for VLSI’, Proc. 22nd Annual IEEE Symp. Found. Comp. Sci., Nashville, 1981, pp. 1–12.

    Google Scholar 

  15. Lotti, G. and Vajteric, M.: ‘The application of VLSI Poisson solvers to the biharmonic problem’, Parallel Computing 18 (1992) 11–19.

    Article  MATH  Google Scholar 

  16. Mead, C. and Conway, L.: Introduction to VLSI Systems, Addison-Wesley, Reading, 1980.

    Google Scholar 

  17. Miklosko,.1., Klette, R., Vajtersic, M. and Vrt’o, I.: Fast Algorithms and their Implementation on Specialized Parallel Computers, North-Volland, Amsterdam; Veda, Bratislava, 1988.

    Google Scholar 

  18. Morandi Cecchi, M. and Redivo Zaglia, M.: ‘Mathematical programming techniques to solve the biharmonic problem by a recursive projection algorithm’, J. C’oznp.:lppl. Math. 32 (1990) 191–201.

    MATH  Google Scholar 

  19. Proskurowski, W. and Widlund, O.: ‘On the numerical solution of Helmholtz’s equation by the capacitance matrix method’, Math. Comput. 30 (1976) 433–468.

    MathSciNet  MATH  Google Scholar 

  20. Samarskii, A. A. and Nikolaev, J. S.: Methods for the Solution of Equations on Grids (in Russian), Nauka, Moscow, 1978.

    Google Scholar 

  21. Sameh, A. H., Chen, S. C. and Kuck, D. J.: ‘Parallel Poisson and biharmonic solvers’, Computing 17 (1976) 219–230.

    Article  MathSciNet  MATH  Google Scholar 

  22. Stone, H. S.: ‘Parallel tridiagonal equation solver’, ACM Trans. Math. Software 1 (1975) 289–307.

    Article  MathSciNet  MATH  Google Scholar 

  23. Thompson, C. D.: ‘Area-time complexity for VLSI’, PhD. Thesis, Carnegie-Mellon University, Pittsburgh, 1980.

    Google Scholar 

  24. Thompson, C. D.: ‘Fourier transform in VLSI’, Tech. Rep., University of California, Berkeley, 1982.

    Google Scholar 

  25. Ullman, J. D.: Computational Aspects of VLSI, Computer Science Press, Rockville, Md., 1984.

    MATH  Google Scholar 

  26. Vajtersic, M.: ‘A fast algorithm for solving the first biharmonic boundary value problem’, Computing 23 (1979) 171–178.

    Article  MathSciNet  MATH  Google Scholar 

  27. Vajtersic, M.: ‘Parallel marching Poisson solvers’, Parallel Computing 1 (1984) 325–330.

    Article  Google Scholar 

  28. Vajtersic, M.: ‘VLSI implementation of a fast Poisson solver’, in Proc. CONPAR 88, Cambridge University Press, Cambridge, 1989, pp. 695–702.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Marián Vajteršic

About this chapter

Cite this chapter

Vajteršic, M. (1993). VLSI elliptic solvers. In: Algorithms for Elliptic Problems. Mathematics and Its Applications (East European Series), vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0701-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0701-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4190-6

  • Online ISBN: 978-94-017-0701-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics