Skip to main content

Why do cladocerans fail to control algal blooms?

  • Conference paper
Biomanipulation Tool for Water Management

Part of the book series: Developments in Hydrobiology ((DIHY,volume 61))

Abstract

Field studies show that even at high nutrient loads phytoplankton may be kept at low levels by filter-feeding zooplankton for a period of weeks (spring clear water phase in lakes) or months (low-stocked fish-ponds). In the absence of planktivorous fish, large-bodied cladocerans effectively control the abundance of algae of a broad size spectrum. Laboratory experiments show that, although difficult to handle and of poor nutritional value, filamentous algae can also be utilized by large-bodied Daphnia and prevented from population increase, exactly as the principles of the biomanipulation approach would predict.

This is not always the case, however. Even when released from predation, large cladocerans often cannot grow and reproduce fast enough to prevent bloom formation. Sometimes, they disappear when the bloom becomes dense, and the biomanipulation approach is not applicable any more.

Recent experimental data on four differently-sized Daphnia species are used in an attempt to (1) explain why cladocerans fail to control filamentous cyanobacteria when filament density is high, and (2) determine the critical filament density at which Daphnia becomes ineffective. At this critical concentration, Daphnia growth and reproduction is halted, and no positive numerical response to growing phytoplankton standing crop should be expected from Daphnia population. Bloom formation thus becomes irreversible. The question of what can be done to overcome this bottleneck of the biomanipulation approach may become one of the most challenging questions in plankton ecology in the nearest future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, G., H. Bergren, G. Cronberg and C. Gellin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Article  CAS  Google Scholar 

  • Brooks, J. L. and S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Benndorf, J., H. Kneschke, K. Kossatz and E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Int. Revue ges. Hydrobiol. 69: 407–428.

    Google Scholar 

  • Bogatova, I., 1965. The food of daphnids and diaptomids in ponds. Trudy Vserossivskogo nauchno-issledovatel’skogo instituta prudova rybnovo khozyaistva, voprosy prudovovo rybovodstva 13: 165–178.

    Google Scholar 

  • Burns, C. W., 1968. Direct observation of mechanisms regu-

    Google Scholar 

  • lating feeding behavior of Daphnia in lake water. Int. Revue ges. Hydrobiol. 53: 83–100.

    Google Scholar 

  • Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species of Daphnia. Limnol. Oceanogr. 14: 423–440.

    Google Scholar 

  • Burns, C. W., 1987. Insights into zooplankton-cyanobacteria interactions derived from enclosure studies. N.Z.J. mar. Freshwat. Res. 21: 477–482.

    Google Scholar 

  • Burns, C. W., D. J. Forsyth, J. F. Haney, M. R. James, W. Lampert and R. D. Pridmore, (submitted). Coexistence and exclusion of zooplankton by Anabaena minutissima var. attenuata in Lake Rotongaio, New Zealand. Arch. Hydrobiol. Beih. Ergebn. Limnol.

    Google Scholar 

  • Dawidowicz, P., 1989. Conditions which must be fullfilled to allow efficient control of phytoplankton by zooplankton. Ph. D. Thesis, University of Warsaw (in Polish), 48 pp. Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200 /201: 43–47.

    Google Scholar 

  • Dawidowicz, P and Z. M. Gliwicz, 1987. Biomanipulation. III. The role of direct and indirect relationship between phytoplankton and zooplankton. Wiadomosci Ekolog. 33: 259–277.

    Google Scholar 

  • Dawidowicz, P., Z. M. Gliwicz and R. D. Gulati, 1988. Can Daphnia prevent a blue-green algal bloom in hypertrophie lakes? A laboratory test. Limnologica (Berlin) 19, 1: 21–26.

    Google Scholar 

  • De Bernardi, R. and G. Giussani, 1978. Effect of mass fish mortality on zooplankton structure and dynamics in a small Italian lake (Lago di Annone). Verh. int. Ver. Limnol. 20: 1045–1048.

    Google Scholar 

  • De Bernardi, R., G. Giussani and E. Lasso Pedretti, 1981. The significance of blue-green algae as food for filter-feeding zooplankton: experimental studies on Daphnia spp. fed by Microcystis aeruginosa. Verh. int. Ver. Limnol. 21: 477–483.

    Google Scholar 

  • DeMott, W. R., 1989. The role of food limitation and competition in zooplankton seasonal succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 195–252.

    Chapter  Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Google Scholar 

  • Edmondson, W. T. and A. H. Litt, 1982. Daphnia in Lake Washington. Limnol. and Oceanogr. 27: 272–293.

    Google Scholar 

  • Elliott, E. T., D. Casranares, D. Perlmutter and K. G. Porter, 1983. Trophic level control of production and nutrient dynamics in experimental planktonic community. Oikos 41: 7–16.

    Article  Google Scholar 

  • Fott, J., L. Pechar and M. Prazakova, 1980. Fish as a factor controlling water quality in ponds. Dev. Hydrobiol. 2: 255–261.

    Google Scholar 

  • Fretwell, S. F., 1977. The regulating of plant communities by the food chains exploiting them. Persp. Biol. Med. 20: 169–185.

    Google Scholar 

  • Fulton III, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwat. Biol. 20: 263–271. Fulton III, R. S. and M. W. Pearl, 1988. Effects of blue-green

    Google Scholar 

  • algae Microcystis aeruginosa on zooplankton competitive relations. Oecologia (Berlin) 76: 383–389.

    Google Scholar 

  • Geller, W. and H. Muller, 1981. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia (Berlin) 49: 316–321.

    Google Scholar 

  • Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. pol. A. 17: 65–708.

    Google Scholar 

  • Gliwicz, Z. M., 1975. Effect of zooplankton grazing on photosynthetic activity and composition of phytoplankton. Verh. int. Ver. Limnol 19: 1490–1497.

    Google Scholar 

  • Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekol. pol. 25: 179–225.

    Google Scholar 

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in cladocerans–another aspect of inter-specific competition in filter-feeding zooplankton. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 282–291.

    Google Scholar 

  • Gliwicz, Z. M., 1985. Predation of food limitation: an ultimate reason for extinction of planktonic cladoceran species. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 419–430.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Article  Google Scholar 

  • Gliwicz, Z. M., in press. Daphnia growth at different concen- trations of cyanobacteria filaments. Arch. Hydrobiol.

    Google Scholar 

  • Gliwicz, Z. M. and W. Lampert, in press. Food thresholds in three Daphnia species in the absence and in the presence of blue-green filaments. Ecology.

    Google Scholar 

  • Gliwicz, Z. M. and J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.), Plankton ecology: Succession in planktonic communities. Springer, Heidelberg: 253–296.

    Chapter  Google Scholar 

  • Gliwicz, Z. M. and E. Siedlar, 1980. Food size limitation and algae interferring with food collection in Daphnia. Arch. Hydrobiol. 88: 155–177.

    Google Scholar 

  • Goad, J., 1984. A biomanipulation experiment in Green Lake, Seattle, Washington. Arch. Hydrobiol. 102: 137–153.

    Google Scholar 

  • Hanazato, T. and M. Yasuno, 1984. Growth, reproduction and assimilation of Moina macropoda fed on Mycrocystis and/or Chlorella. Jap. J. Ecol. 34: 195–202.

    Google Scholar 

  • Haney, J. F., 1987. Field studies on zooplankton-cyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 467–475.

    Google Scholar 

  • Hanski, I. and E. Ranta, 1983. Coexistence in a patchy environment: three species of Daphnia in rock pools. J. anim. Ecol. 52: 263–279

    Google Scholar 

  • Hartman, H. J., 1985. Feeding of Daphnia pulicaria and Diaptomus ashlandi on mixtures of unicellular and filamentous algae. Verh. int. Ver. Limnol. 22: 3178–3183.

    Google Scholar 

  • Hawkins, P. and W. Lampert, in press. The effect of Daphnia body size on filtering rate inhibition, in the presence of a filamentous cyanobacterium. Limnol. Oceanogr.

    Google Scholar 

  • Holm, N. P., G. G. Ganf and J. Shapiro, 1983. Feeding and assimilation rates of Daphnia pulex fed Aphanizomenon flos-aquae. Limnol. Oceanogr. 28: 677–687.

    Google Scholar 

  • Holm, N. P. and J. Shapiro, 1984. An examination of lipid reserves and the nutritional status of Daphnia pulex fed Aphanizomenon flos-aquae. Limnol. Oceanogr. 29: 1137–1140.

    Google Scholar 

  • Hrbâcek, J., 1962. Species composition and amount of the zooplankton in relation to the fish stock. Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved, 10: 1–116.

    Google Scholar 

  • Hrbâcek, J., B. Desortova and J. Popovsky, 1978. Influence of the fish stock on the phosphorus-chlorophyll ratio. Verh. int. Ver. Limnol. 20: 1624–1628.

    Google Scholar 

  • Infante, A., 1973. Untersuchungen über die Ausnutzbarkeit verschledener Algen durch das Zooplankton. Arch. Hydrobiol., Suppl. 42: 340–405.

    Google Scholar 

  • Infante, A. and S. E. B. Abella, 1985. Inhibition of Daphnia by Oscillatoria in Lake Washington. Limnol Oceanogr. 30: 1046–1052.

    Article  Google Scholar 

  • Infante, A. and W. Riehl, 1984. The effect of Cyanophyta upon zooplankton in a eutrophic tropical lake. Hydrobiologia 113: 293–298.

    Article  Google Scholar 

  • Knisely, K. and W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia (Berlin) 69: 86–94.

    Article  Google Scholar 

  • Lampert, W., 1978. Climatic conditions and planktonic interactions as factors controlling the regular succession of spring algal bloom and extremely clear water in Lake Constance. Verh. int. Ver. Limnol. 20: 969–974.

    Google Scholar 

  • Lampert, W., 1981. Inhibitory and toxic effects of blue-green algae on Daphnia. Int. Revue ges. Hydrobiol. 66: 285–298.

    Google Scholar 

  • Lampert, W., 1982. Further studies on the inhibitory effects of toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol. 95: 207–220.

    Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplanktoncyanobacteria interactions. N.Z.J. mar. Freshwat. Res. 21: 483–490.

    Google Scholar 

  • Lampert, W., 1988. The relationship between zooplankton biomass and grazing. A review. Limnologica (Berlin) 19,1: 1–20.

    Google Scholar 

  • Lehman, J. T., 1980. Release cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.

    Google Scholar 

  • Lynch, M., 1977. Fitness and optimal size in zooplankton populations. Ecology 58: 763–774.

    Article  Google Scholar 

  • Lynch, M., 1979. Predation, competition, and zooplankton structure: An experimental study. Limnol. Oceanogr. 24: 253–272.

    Google Scholar 

  • Lynch, M., 1980. Aphanizomenon blooms: Alternate control and cultivation by Daphnia pulex in W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, Hanover: 229–304.

    Google Scholar 

  • Lynch, M. and J. Shapiro, 1981. Predation, enrichment and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.

    Google Scholar 

  • McQueen, D. J., J. R. Post and E. L. Mills, 1986. Trophic relationships in freshwater ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • Nizan, S., C. Dimentman and M. Shilo, 1986. Acute toxic effects of cyanobacterium Microcystis aeruginosa on Daphnia magna. Limnol. Oceanogr. 31: 497–502.

    Google Scholar 

  • Peters, R. H., 1975. Phosphorus excretion and the measurement of feeding and assimilation by zooplankton. Limnol. Oceanogr. 20: 858–859.

    Google Scholar 

  • Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Article  Google Scholar 

  • Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–70.

    Google Scholar 

  • Porter, K. G. and R. McDonough, 1984. The energetic cost of response to blue-green algae filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.

    Google Scholar 

  • Porter, K. G., and J. D. Orcutt, 1980. Nutritional adequacy, manage-ability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. University Press of New England, Hanover: 268–281.

    Google Scholar 

  • Reinertsen, H. and Y. Olsen, 1984. Effects of fish elimination on the phytoplankton community of an eutrophie lake. Verh. int. Ver. Limnol. 22: 649–657.

    Google Scholar 

  • Richman, S. and S. I. Dodson, 1983. The effect of food quality on feeding and respiration by `UDaphnia`u and `UDiaptomus`u. Limnol. Oceanogr. 28: 948–956.

    Google Scholar 

  • Romanovsky, Y. E., 1984. Individual growth rate as a measure of competitive adventages in cladoceran crustaceans. Int. Revue ges. Hydrobiol. 69: 613–632.

    Google Scholar 

  • Romanovsky, Y., 1985. Food limitation and life-history strategies in cladoceran crustaceans. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 363–372.

    Google Scholar 

  • Scharf, E. M., P. V. Spittler and J.-A. Oertzen, 1979. Zum Einfluss von Mycrocystis aeruginosa (Cyanophyta) auf das Populationswachstum von Chydorus sphaericus (Cladocera). Wissenschaftl. Zeitschr. d. Univers. Rostock 28: 531–534.

    Google Scholar 

  • Schindler, D. W. and G. W. Comita, 1972. The dependence of primary production upon physical and chemical factors in a small senescing lake, including the effects of complete water oxygen depletion. Arch. Hydrobiol. 69: 413–451.

    Google Scholar 

  • Shapiro, J., D. I. Wright, 1984. Lake restauration by biomanipulation - Round Lake, Minnesota. Freshwat. Biol. 14: 371–383.

    Google Scholar 

  • Shapiro, J., B. Forsberg, V. Lamarra, G. Lindmark, M. Lynch, E. Smeltzer and G. Zoto, 1982. Experiments and experiences in biomanipulation: Studies of ways to reduce algal abundance and eliminate blue-green. Interim. Rep. No. 19, Limnol. Res. center, Univ. of Minnesota, Minneapolis, 251 pp.

    Google Scholar 

  • Smith, F. E., 1969. Effects of enrichment in mathematical models. In Eutrophication: causes, consequences, correctives. Nat. Acad. Sei. Publ. 1700: 124–129.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert and A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106,4: 433–471.

    Google Scholar 

  • Sorokin, Yu. I., A. V. Monakov, Ye. D. Morduchaj-Boltovskaja, E. A. Tsichon-Lucanina and R. A. Rodova, 1965. Experiments on the applicability of the radiocarbon method for studying the trophic role of blue-green algae. Akad. Nauk. SSSR. Institut Biol. Vnutrenn. Vod: 235–240.

    Google Scholar 

  • Stenson, J. A. E., T. Bohlin, L. Henrikson, B. J. Nilsson, H. G. Nyman, H. G. Oscarson and P. Larsson, 1978. Effect of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.

    Google Scholar 

  • Sterner, R. W., 1986. Herbivores’ direct and indirect effects on algal populations. Science 231: 605–607.

    Article  CAS  PubMed  Google Scholar 

  • Tessier, A. J. and C. E. Goulden, 1987. Cladoceran juvenile growth. Limnol. Oceanogr. 32: 680–686.

    Google Scholar 

  • Thompson, J. M., A. J. D. Ferguson and C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545–560.

    Article  Google Scholar 

  • Therlkeld, S. T., 1981. The midsummer dynamics of two Daphnia species in Wintergreen Lake, Michigan. Ecology 60: 165–179.

    Google Scholar 

  • Therlkeld, S. T., 1985. Resource variation and the initiation of midsummer declines of cladoceran populations. Arch. Hydrobiol. Beih. ergebn. Limnol. 21: 333–340.

    Google Scholar 

  • Tillmann, U. and W. Lampert, 1984. Competitive ability of differently sized Daphnia species: An experimental test. J. Freshwat. Ecol. 2: 311–323.

    Google Scholar 

  • Vaga, R. M., D. A. Culver and C. A. Munch, 1985. The fecundity ratios of Daphnia and Bosmina as a function of inedible algal standing drop. Verh. int. Ver. Limnol 22: 3072–3075.

    Google Scholar 

  • Webster, K. E. and R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filters in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1245.

    Google Scholar 

  • Zankai, N. P., 1983. Ingestion rates of some Daphnia species in a shallow lake (Lake Balaton, Hungary). Int. Revue ges. Hydrobiol. 68: 227–237.

    Google Scholar 

  • Zankai, N. P. and J. E. Ponyi, 1986. Composition, density and feeding of crustacean zooplankton community in a shallow, temperate lake ( Lake Balaton, Hungary). Hydrobiologia 135: 131–147.

    Google Scholar 

  • Zaret, T. M., 1980. Predation and freshwater communities. Yale Univ. Press, New Haven, 180 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gliwicz, Z.M. (1990). Why do cladocerans fail to control algal blooms?. In: Gulati, R.D., Lammens, E.H.R.R., Meijer, ML., van Donk, E. (eds) Biomanipulation Tool for Water Management. Developments in Hydrobiology, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0924-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0924-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4074-9

  • Online ISBN: 978-94-017-0924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics