Skip to main content

Review of Lagrangian Stochastic Models for Trajectories in the Turbulent Atmosphere

  • Chapter
Boundary-Layer Meteorology 25th Anniversary Volume, 1970–1995

Abstract

We review the theoretical basis for, and the advantages of, random flight models for the trajectories of tracer particles in turbulence. We then survey their application to calculate dispersion in the principal types of atmospheric turbulence (stratified, vertically-inhomogeneous, Gaussian or non-Gaussian turbulence in the surface layer and above), and show that they are especially suitable for some problems (e.g., quantifying ground emissions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand M. S. and Pope, S. B.: 1983, ‘Diffusion Behind a Line Source in Grid Turbulence’, in L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt and J. H. Whitelaw (eds.), Turbulent Shear Flows 4, Springer, pp. 46-52.

    Google Scholar 

  • de Baas, A. F., Van Dop, H., and Nieuwstadt, F. T. M.: 1986, ‘An Application of the Langevin Equation for Inhomogeneous Conditions to Dispersion in a Convective Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 112, 165–180.

    Article  Google Scholar 

  • Baerentsen, J. H. and Berkowicz, R.: 1984, ‘Monte Carlo Simulation of Plume Dispersion in the Convective Boundary Layer’, Atmos. Environ. 18, 701–712.

    Article  Google Scholar 

  • Borgas, M. S. and Sawford, B. L.: 1991, ‘The Small-Scale Structure of Acceleration Correlations and Its Role in the Statistical Theory of Turbulent Dispersion’, J. Fluid Mech. 228, 295–320.

    Google Scholar 

  • Borgas, M. S. and Sawford, B. L.: 1994a, ‘Stochastic Equations with Multifractal Random Increments for Modelling Turbulent Dispersion’, Phys. Fluids 6, 618–633.

    Article  Google Scholar 

  • Borgas, M. S. and Sawford, B. L.: 1994b, ‘A Family of Stochastic Models for Two-Particle Dispersion in Isotropic Homogeneous Stationary Turbulence’, J. Fluid Mech. 279, 69–99.

    Article  Google Scholar 

  • Borgas, M. S., Flesch, T. K., and Sawford, B. L.: 1995, ‘Turbulent Dispersion with Broken Reflexional Symmetry’, J. Fluid Mech. (Submitted).

    Google Scholar 

  • Coppin, P. A., Raupach, M. R., and Legg, B. J.: 1986, ‘Experiments on Scalar Dispersion Within a Model Plant Canopy, Part II: An Elevated Plane Source’, Boundary-Layer Meteorol. 35, 167–191.

    Google Scholar 

  • Corrsin, S.: 1974, ‘Limitations of Gradient Transport Models’, Adv. Geophys. 18A, 25–60.

    Article  Google Scholar 

  • Davis, P. A.: 1983, Markov Chain Simulations of Vertical Dispersion from Elevated Sources into the Neutral Planetary Boundary Layer’, Boundary Layer Meteorol. 26, 355–376.

    Article  Google Scholar 

  • Deardorff, J. W.: 1978, ‘Closure of Second and Third Moment Rate Equations for Diffusion in Homogeneous Turbulence’, Phys. Fluids 21, 525–530.

    Article  Google Scholar 

  • Denmead, O. T. and Bradley, E. F.: 1985, ‘Flux-Gradient Relationships in a Forest Canopy’, in B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publ. Co., ISBN 90-277-1936-5.

    Google Scholar 

  • van Dop, H., Nieuwstadt, F. T. M., and Hunt, J. C. R.: 1985, ‘Random Walk Models for Particle

    Google Scholar 

  • Displacements in Inhomogeneous Unsteady Turbulent Flows’, Phys. Fluids 28, 1639-1653.

    Google Scholar 

  • Du, S., Wilson, J. D., and Yee, E.: 1994a, ‘Probability Density Functions for Velocity in the Convective Boundary Layer, and Implied Trajectory Models’, Atmos. Environ. 28, 1211–1217.

    Article  Google Scholar 

  • Du, S., Wilson, J. D., and Yee, E.: 1994b, ‘On the Moments Approximation Method for Constructing a Lagrangian Stochastic Model’, Boundary-Layer Meteorol. 70, 273–292.

    Article  Google Scholar 

  • Du, S., Sawford, B. L., Wilson, J. D., and Wilson, D. J.: 1995, ‘A Determination of the Kolmogorov Constant (Go) for the Lagrangian Velocity Structure Function, Using a Second-Order Lagrangian Stochastic Model for Decaying Homogeneous, Isotropic Turbulence, Phys. Fluids. 1, 3083–3090.

    Google Scholar 

  • Durbin, P. A.: 1983, ‘Stochastic Differential Equations and Turbulent Dispersion’, NASA Reference Publication 1103.

    Google Scholar 

  • Flesch, T. K.: 1996, ‘The Footprint for Flux Measurements, from Backward Lagrangian Stochastic Models’, Boundary-Layer Meteorol. (in press).

    Google Scholar 

  • Flesch, T. K. and Wilson, J. D.: 1992, ‘A Two-Dimensional Trajectory-Simulation Model for Non-Gaussian, Inhomogeneous Turbulence Within Plant Canopies’, Boundary-Layer Meteorol. 61, 349–374.

    Article  Google Scholar 

  • Flesch, T. K., and Wilson, J. D.: 1995, ‘Backward-Time Lagrangian Stochastic Dispersion Models, and Their Application to Estimate Gaseous Emissions’, J. Appl. Meteorol. 34, 1320–1332.

    Article  Google Scholar 

  • Gardiner, C. W.: 1983, Handbook of Stochastic Methods for Physics Chemistry and the Natural Sciences, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Hurley, P. and Physick, W.: 1993, ‘A Skewed Homogeneous Lagrangian Particle Model for Convective Conditions’, Atmos. Environ. 27A, 619–624.

    Article  Google Scholar 

  • Hurley, P. J.: 1994, ‘PARTPUFF–A Lagrangian Particle-Puff Approach for Plume Dispersion Modeling Applications’, J. Appl. Meteorol. 33, 285–294.

    Article  Google Scholar 

  • Jaynes, E. T.: 1957, ‘Information Theory and Statistical Mechanics’, Phys. Rev. 106, 620–630.

    Article  Google Scholar 

  • Legg, B. J. and Raupach, M. R.: 1982, ‘Markov Chain Simulations of Particle Dispersion in Inhomogeneous Flows: The Mean Drift Velocity Induced by a Gradient in Eulerian Mean Velocity’, Boundary-Layer Meteorol. 24, 3–13.

    Article  Google Scholar 

  • Legg, B. J.: 1983, ‘Turbulent Dispersion from an Elevated Line Source: Markov Chain Simulations of Concentration and Flux Profiles’, Quart. J. Roy. Meteorol. Soc. 109, 645–660.

    Article  Google Scholar 

  • Legg, B. J., Raupach, M. R., and Coppin, R. A.: 1986, ‘Experiments on Scalar Dispersion Within a

    Google Scholar 

  • Model Plant Canopy, Part III: An Elevated Line Source’, Boundary-Layer Meteorol. 35, 277–302.

    Google Scholar 

  • Luhar, A. K. and Britter, R. E.: 1989, ‘A Random Walk Model for Dispersion in Inhomogeneous

    Google Scholar 

  • Turbulence in a Convective Boundary Layer’, Atmos. Environ. 23, 1911-1924.

    Google Scholar 

  • Luhar, A. L. and Rao, K. S.: 1993, ‘Random-Walk Model Studies of the Transport and Diffusion of Pollutants in Katabatic Flows’, Boundary-Layer Meteorol. 66, 395–412.

    Article  Google Scholar 

  • Manins, P. C.: 1995, ‘Selected Papers on LADM, CSIRO’s Lagrangian Atmospheric Dispersion Mod-el’, Environmental Consulting and Research Unit, CSIRO Division of Atmospheric Research.

    Google Scholar 

  • McNider, R. T., Moran, M. D., and Pielke R. A.: 1988, ‘Influence of Diurnal and Inertial Boundary-Layer Oscillations on Long-Range Dispersion’, Atmos. Environ. 22, 2445–2462.

    Article  Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1975, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2, MIT Press, Cambridge MA.

    Google Scholar 

  • Nappo, C. J. and Rao, K. S.: 1987, ‘A Model Study of Pure Katabatic Flows’, Tellus 39A, 61–71.

    Google Scholar 

  • Physick, W. L., Noonan, J. A., McGregor, J. L., Hurley, R. J., Abbs, D. J., and Manins, R. C.: 1993, LADM: ALagrangianAtmosphericDispersion Model. CSIRO Division of Atmospheric Research Technical Report No. 24.

    Google Scholar 

  • Pielke, R. A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., and Copeland, J. H.: 1992, ‘A Comprehensive Meteorological Monitoring System–RAMS’, Meteorol. Atmos. Phys. 49, 69–91.

    Article  Google Scholar 

  • Pope, S. B.: 1994, ‘On the Relationship Between Stochastic Lagrangian Models of Turbulence and Second-Moment Closures’, Phys. Fluids 6, 973–985.

    Article  Google Scholar 

  • Raupach, M. R.: 1987, ‘A Lagrangian Analysis of Scalar Transfer in Vegetation Canopies’, Quart. J. Roy. Meteorol. Soc. 113, 107–120.

    Article  Google Scholar 

  • Rodean, H. C.: 1996, ‘Stochastic Lagrangian Models of Turbulent Diffusion’, Am. Meteorol. Soc. monograph, in press.

    Google Scholar 

  • Sawford, B. L.: 1985, ‘Lagrangian Statistical Simulation of Concentration Mean and Fluctuation Fields’, J. Clim. Appl. Meteorol. 24, 1152–1166.

    Article  Google Scholar 

  • Sawford, B. L.: 1993, ‘Recent Developments in the Lagrangian Stochastic Theory of Turbulent Dispersion’, Boundary-Layer Meteorol. 62, 197–215.

    Article  Google Scholar 

  • Sawford, B. L. and Guest, F. M.: 1987, ‘Lagrangian Stochastic Analysis of Flux-Gradient Relationships in the Convective Boundary Layer’, J. Atmos. Sci. 44, 1152–1165.

    Article  Google Scholar 

  • Sawford, B. L. and Guest, F. M.: 1988, ‘Uniqueness and Universality of Lagrangian Stochastic Models of Turbulent Dispersion’, Preprints of 8th Symp. Turb. Diff., AMS, San Diego, CA, pp. 96–99.

    Google Scholar 

  • Sawford, B. L. and Tivendale, C. M.: 1992, ‘Measurements of Concentration Statistics Downstream of a Line Source in Grid Turbulence’, in Proc. 11th Australasian Fluid Mechanics Conf., Hobart, Dec.14-18, 1992, pp. 945-948, University of Tasmania.

    Google Scholar 

  • Sawford, B. L. and Borgas, M. S.: 1994, ‘On the Continuity of Stochastic Models for the Lagrangian Velocity in Turbulence’, Physica D 76, 297–311.

    Article  Google Scholar 

  • Shaw, R. H., Tavangar, J., and Ward, D. P.: 1983, ‘Structure of the Reynolds Stress in a Canopy Layer’, J. Clim. Appl. Meteorol. 22, 1922-1931.

    Google Scholar 

  • Smith, F. B.: 1982, ‘The Integral Equation of Diffusion’, in Proc. 13th NATO/CCMS Conf. on Air Pollution Modelling and its Application, Plenum, pp. 23-34.

    Google Scholar 

  • Smith, F. B. and Thomson, D. J.: 1984, ‘Solutions of the Integral Equation of Diffusion and the Random Walk Model for Continuous Plumes and Instantaneous Puffs in the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 30, 143–157.

    Article  Google Scholar 

  • Stapountzis, H., Sawford, B. L., Hunt, J. C. R., and Britter, R. E.: 1986, ‘Structure of the Temperature Field Downstream of a Line Source in Grid Turbulence’, J. Fluid Mech. 165, 401–421.

    Article  Google Scholar 

  • Taylor, G. I.: 1921: ‘Diffusion by Continuous Movements’, Proc. London Math. Soc. Series 2 20, 196–212.

    Google Scholar 

  • Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, Cambridge MA.

    Google Scholar 

  • Tennekes, H.: 1979, ‘The Exponential Lagrangian Correlation Function and Turbulent Diffusion in the Inertial Subrange’, Atmos. Environ. 13, 1565–1567.

    Google Scholar 

  • Thomson, D. J.: 1984, ‘Random Walk Modelling of Diffusion in InhomogeneousTurbulence’, Quart. J. Roy. Meteorol. Soc. 110, 1107–1120.

    Article  Google Scholar 

  • Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid Mech. 180, 529–556.

    Article  Google Scholar 

  • Uliasz, M.: 1993, ‘The Atmospheric Mesoscale Dispersion Modeling System’, J. Appl. Meteorol. 32, 139–149.

    Article  Google Scholar 

  • Underwood, B. Y.: 1991, ‘Deposition Velocity and the Collision Model of Atmospheric Dispersion -1. Framework and Application to Cases with Constant Turbulent Velocity Scale’, Atmos. Environ. 25A, 2749–2759.

    Article  Google Scholar 

  • Wang, L-P. and Stock, D. E.: 1992, ‘Stochastic Trajectory Models for Turbulent Diffusion: Monte Carlo Process Versus Markov Chains’, Atmos. Environ. 26A, 1599–1607.

    Article  Google Scholar 

  • Warhaft, Z.: 1984, ‘The interference of thermal fields from line sources in grid turbulence’, J. Fluid Mech. 144, 363–387.

    Article  Google Scholar 

  • Weil, J. C.: 1990, ‘A diagnosis of the asymmetry in top-down and bottom-up diffusion using a Lagrangian stochastic model’, J. Atmos. Sci. 47, 501–515.

    Article  Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1976, ‘A Laboratory Model of Diffusion into the Convective Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 102, 427–445.

    Article  Google Scholar 

  • Willis, G. and Deardorff, J. W.: 1978, ‘A Laboratory Study of Dispersion from an Elevated Source

    Google Scholar 

  • Within a Modeled Convective Planetary Boundary Layer’, Atmos. Environ. 12, 1305-1311.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1981, ‘A Laboratory Study of Dispersion from a Source in the Middle of the Convective Mixed Layer’, Atmos. Environ. 15, 109–117.

    Article  Google Scholar 

  • Wilson, J. D.: 1989, ‘Turbulent Transport Within the Plant Canopy’, in Estimation of Areal Evapotranspiration, Intl. Assoc. Hydro. Sci., Publ. No. 177.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981a, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence, III. Comparison of Predictions with Experimental Data for the Atmospheric Surface-Layer’, Boundary-Layer Meteorol. 21, 443–463.

    Article  Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981 b, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence. II. Systems with Variable Turbulent Velocity Scale’, Boundary-Layer Meteorol. 21, 423-441.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., Kidd, G. E., and Beauchamp, E. G.: 1982, ‘Estimation of the Rate of Gaseous Mass Transfer from a Surface Source Plot to the Atmosphere’, Atmos. Environ. 16, 1861-1868.

    Google Scholar 

  • Wilson, J. D., Legg, B. J., and Thomson, D. J.: 1983, ‘Calculation of Particle Trajectories in the Presence of a Gradient in Turbulent-Velocity Variance’, Boundary-Layer Meteorol. 27, 163–169.

    Article  Google Scholar 

  • Wilson, J. D., Ferrandino, F. J., and Thurtell, G. W.: 1989, ‘A Relationship Between Deposition Velocity and Trajectory Reflection Probability for Use in Stochastic Lagrangian Dispersion Models’, Agric. Forest Meteorol. 47, 139–154.

    Article  Google Scholar 

  • Wilson, J. D. and Flesch, T. K.: 1993, ‘Flow Boundaries in Random-Flight Dispersion Models: Enforcing the Well-Mixed Condition’, J. Appl. Meteorol. 32, 1695–1707.

    Article  Google Scholar 

  • Wilson, J. D., Flesch, T. K., and Swaters, G. E.: 1993, ‘Dispersion in Sheared Gaussian Homogeneous Turbulence’, Boundary-Layer Meteorol. 62, 281–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wilson, J.D., Sawford, B.L. (1996). Review of Lagrangian Stochastic Models for Trajectories in the Turbulent Atmosphere. In: Garratt, J.R., Taylor, P.A. (eds) Boundary-Layer Meteorology 25th Anniversary Volume, 1970–1995. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0944-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0944-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4740-3

  • Online ISBN: 978-94-017-0944-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics