Skip to main content

Geological Processes and Evolution

  • Conference paper
Chronology and Evolution of Mars

Abstract

Geological mapping and establishment of stratigraphic relationships provides an overview of geological processes operating on Mars and how they have varied in time and space. Impact craters and basins shaped the crust in earliest history and as their importance declined, evidence of extensive regional volcanism emerged during the Late Noachian. Regional volcanism characterized the Early Hesperian and subsequent to that time, volcanism was largely centered at Tharsis and Elysium, continuing until the recent geological past. The Tharsis region appears to have been largely constructed by the Late Noachian, and represents a series of tectonic and volcanic centers. Globally distributed structural features representing contraction characterize the middle Hesperian. Water-related processes involve the formation of valley networks in the Late Noachian and into the Hesperian, an ice sheet at the south pole in the middle Hesperian, and outflow channels and possible standing bodies of water in the northern lowlands in the Late Hesperian and into the Amazonian. A significant part of the present water budget occurs in the present geologically young polar layered terrains. In order to establish more firmly rates of processes, we stress the need to improve the calibration of the absolute timescale, which today is based on crater count systems with substantial uncertainties, along with a sampling of rocks of unknown provenance. Sample return from carefully chosen stratigraphic units could calibrate the existing timescale and vastly improve our knowledge of Martian evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharonson, O., Zuber, M.T., and Rothman, D.H.: 2001, “Statistics of Mars’ Topography from MOLA: Slopes, Correlations, and Physical Models’, J. Geopys. Res. 106, in press.

    Google Scholar 

  • Anderson, R.C., and Dohm, J.M.: 2000, ‘Magmatic-Tectonic Evolution of Tharsis’, 3J St Lunar Planet. Sci., LPI, Houston, abstract #1607 (CD-ROM).

    Google Scholar 

  • Anderson, R.C., Golombek, M.P., Franklin, B.J., Tanaka, K.L., Dohm, J.M., Lias, J.H., and Peer, B.: 1998, ‘Centers of Tectonic Activity Through Time for the Western Hemisphere of Mars’, 29th Lunar Planet. Sci. Conf, LPI, Houston, abstract #1881 (CD-ROM).

    Google Scholar 

  • Anderson, R.C., et al.: 2000, ‘Primary Centers and Secondary Concentrations of Tectonic Activity Through Time in the Western Hemisphere of Mars’, J. Geophys. Res, submitted.

    Google Scholar 

  • Baker, V.R., and Kochel, R.C.: 1979, ‘Morphometry of Streamlined Forms in Terrestrial and Martian Channels’, Proc. 9th Lunar Planet. Sci. Conf 9, 3181–3193.

    Google Scholar 

  • Baker, V.R., Strom, R.G., Gulick, V.C., Kargel, J.S., Komatsu, G., and Kale, V.S.: 1991, ‘Ancient Oceans, Ice Sheets and the Hydrological Cycle on Mars’, Nature 352, 589–594.

    Article  ADS  Google Scholar 

  • Baker, V.R., Carr, M.H., Gulick, V.C., Williams, C.R., and Marley, M.S.: 1992, ‘Channels and Valley Networks’, in H.H. Kieffer, B.M. Jakosky, C.W. Snyder, and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 493–522.

    Google Scholar 

  • Banerdt, W.B., and Golombek, M.P.: 2000, ‘Tectonics of the Tharsis Region, Insights from MGS Topography and Gravity’, 31St Lunar Planet. Sci. Conf, abstract #2038.

    Google Scholar 

  • Banerdt, W.B., Phillips, R.J., Saunders, R.S., and Sleep, N.H.: 1982, ‘Thick Shell Tectonics on One-Plate Planets: Application to Mars’, J. Geophys. Res. 87, 9723–9733.

    Article  ADS  Google Scholar 

  • Banerdt, W.B., Golombek, M.P., and Tanaka, K.L.: 1992, ‘Stress and tectonics on Mars’, in H.H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 249–297.

    Google Scholar 

  • Barlow, N.: 1988, ‘Parameters affecting formation of Martian impact crater ejecta morphology’, 19th Lunar Planet. Sci., LPI, Houston, 29–30.

    Google Scholar 

  • Bibring, J.-P., and Erard, S.: 2001, ‘The Mars Surface Composition’, Space Sci. Rev., this volume. Bridges, J.C., Catling, D.C., Saxton, J.M., Swindle, T.D., Lyon, I.C., and Grady, M.M.: 2001, ‘Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes’, Space Sci. Rev., this volume.

    Google Scholar 

  • Cabrol, N.A. and Grin, E.A.: 2001, ‘The evolution of lacustrine environemnts on Mars: Is Mars only hydrologically dormant?’, Icarus 149, 291–328.

    Article  ADS  Google Scholar 

  • Can, M.H.: 1973, ‘Volcanism on Mars’, J. Geophys. Res. 78, 4049–4062.

    Article  ADS  Google Scholar 

  • Carr, M.H.: 1974a, ‘The Role of Lava Erosion in the Formation of Lunar Rilles and Martian Channels’, Icarus 22, 1–23.

    Article  ADS  Google Scholar 

  • Carr, M.H.: 1974b, ‘Tectonism and Volcanism of the Tharsis Region of Mars’, J. Geophys. Res. 79, 3943–3949.

    Article  ADS  Google Scholar 

  • Can, M.H.: 1979, ‘Formation of Martian Flood Features by Release of Water from Confined Aquifers’, J. Geophys. Res. 84, 2995–3007.

    Article  ADS  Google Scholar 

  • Carr, M.H.: 1981, The Surface of Mars, Yale Univ. Press, New Haven.

    Google Scholar 

  • Carr, M.H.: 1983, ‘The Stability of Streams and Lakes on Mars’, Icarus 56, 476–495. Car, M.H.: 1986, ‘Mars: A Water-rich Planet?’, Icarus 56, 187–216.

    Article  Google Scholar 

  • Can, M.H.: 1995, ‘The Martian Drainage System and the Origin of Valley Networks and Fretted Channels’, J. Geophys. Res. 100, 7479–7507.

    Article  ADS  Google Scholar 

  • Carr, M.H.: 1996, Water on Mars, Oxford Univ. Press, New York, 229 pp.

    Google Scholar 

  • Can, M.H.: 2001, ‘Mars Global Surveyor observations of Martian fretted terrain’, J. Geophys. Res. in press.

    Google Scholar 

  • Carr, M.H., and Clow, G.D.: 1981, ‘Martian Channels and Valleys: Their Characteristics, Distribution and Age’, Icarus 48, 91–117.

    Article  ADS  Google Scholar 

  • Carr, M.H., and Malin, M.C.: 2000, ‘Meter-scale Characteristics of Martian Channels and Valleys’, Icarus 146, 366–386.

    Article  ADS  Google Scholar 

  • Can, M.H., Greeley, R., Blasius, K.R., Guest, J.E. and Murray, J.B.: 1977b, ‘Some Martian Volcanic Features as Viewed from the Viking Orbiters’, J. Geophys. Res. 82, 3985–4015.

    Article  ADS  Google Scholar 

  • Carr, M.H. et al.: 1980, Viking Orbiter Views of Mars, U.S. Government Printing Office, Washington, D.C., 136 pp.

    Google Scholar 

  • Carr, M.H., Wu, S.S.C., Jordan, R., and Schafer, F.J.: 1987, ‘Volumes of Channels, Canyons and Chaos in the Circum-Chryse Region of Mars’, Proc. 18th Lunar Planet. Sci. Conf., 155 (abstract).

    Google Scholar 

  • Cattermole, P.: 1987, ‘Sequence, Rheological Properties, and Effusion Rates of Volcanic Flows at Alba Patera, Mars’, J. Geophys. Res. 92, 553–560.

    Article  ADS  Google Scholar 

  • Chapman C.R.: 1974, ‘Cratering on Mars. I. Cratering and Obliteration History’, Icarus 22, 272–291. Chicano, A.F., Schultz, P.H., and Masson, P.: 1985, ‘Global and Regional Ridge Patterns on Mars’, Icarus 63, 153–174.

    Google Scholar 

  • Christiansen, E.H.: 1989, ‘Lahars in the Elysium Region of Mars’, Geology 17, 203–206.

    Article  ADS  Google Scholar 

  • Christensen, P.R., Bandfield, J.L., Smith, M.D., Hamilton, V.E. and Clark, R.N.: 2000, ‘Identification of a Basaltic Component on the Martian Surface from Thermal Emission Spectrometer Data’, J. Geophys. Res. 105, 9609–9621.

    Article  ADS  Google Scholar 

  • Clifford, S.M.: 1993, ‘A model for the Hydrologic and Climatic Behaviour of Water on Mars’, J. Geophys. Res. 98, 10,973–11, 016.

    Google Scholar 

  • Clifford, S.M., and Parker, T.J.: 1999, ‘The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains’, Fifth Int. Conf on Mars, July 19–24, 1999, Pasadena, CA, abstract #6236.

    Google Scholar 

  • Connerney, J.E.P., et al.: 1999, ‘Magnetic Lineations in the Ancient Crust of Mars’, Science 284 794–798.

    Google Scholar 

  • Crown, D.A. and Greeley, R.: 1993, ‘Volcanic geology of Hadriaca Patera and the esstern Hellas region of Mars’, J. Geophys. Res. 98, 3431–3451.

    Article  ADS  Google Scholar 

  • Crumpler, L.S., Head, J.W., and Aubele, J.C.: 1996, ‘Calderas on Mars: Characteristics, Structure, and Associated Flank Deformation’, in W.J. McGuire et al.(eds.), Volcano Instability on Earth and Other Planets, Geol. Soc. London Spec. Pub. 110, pp. 307–348.

    Google Scholar 

  • Cutts, J.A., and Blasius, K.R.: 1981, ‘Origin of Martian Outflow Channels: The Eolian Hypothesis’ J. Geophys. Res. 86, 5075–5102.

    Article  ADS  Google Scholar 

  • Dohm, J.M. and Tanaka, K.L.: 1999, ‘Geology of the Thaumasia Region, Mars: Plateau Development, Valley Origins, and Magmatic Evolution’, Planet. Space Sci. 47, 411–431.

    Article  ADS  Google Scholar 

  • Edgett, K.S. and Malin, M.C.: 2000, ‘New Views of Mars Eolian Activity, Materials, and Surface Properties: Three Vignettes from the Mars Global Surveyor Mars Obiter Camera’, J. Geophys. Res. 105, 1623–1650.

    Article  ADS  Google Scholar 

  • Fishbaugh, K.E., and Head, J.W.: 2000, ‘North Polar Region of Mars: Topography of Circumpolar Deposits from Mars Orbiter Laser Altimeter (MOLA) Data and Evidence for Asymmetric Retreat of the Polar Cap’, J. Geophys. Res. 105, 22,455–22,486.

    Google Scholar 

  • Frey, H.: 1979, H.: 1979, ‘Thaumasia: A Fossilized Early Forming Tharsis Uplift’, J. Geophys. Res. 84, 1009 1023.

    Google Scholar 

  • Frey, H., and Schultz, R.A.: 1988, ‘Large Impact Basins and the Mega-Impact Origin for the Crustal Dichotomy on Mars’, Geophys. Res. Lett. 15, 229–232.

    Article  ADS  Google Scholar 

  • Frey, H., Lowry, B.L., and Chase, S.A.: 1979, ‘Pseudocraters on Mars’, J. Geophys. Res. 84, 80758068.

    Google Scholar 

  • Frey, H.V., Shockey, K.M., Frey, E.L., Roark, J.H., and Sakimoto, S.E.H.: 2001, ‘A Very Large Population of Likely Buried Impact Basins in the Northern Lowlands of Mars Revealed by MOLA Data’, Proc. 32nd Lunar Planet. Sci. Conf, abstract #1680.

    Google Scholar 

  • Ghatan, G.J., and Head, J.W.: 2001, ‘Candidate Subglacial Volcanoes in the South Polar Region of Mars’, 32‘ ßd Lunar Planet. Sci. Conf., abstract #1039 (CD-ROM).

    Google Scholar 

  • Golombek, M.P.: 1989, ‘Geometry of Stresses around Tharsis on Mars’, 20 th Lunar Planet. Sci. Conf, LPI, Houston, 345–346.

    Google Scholar 

  • Golombek, M.P. and Banerdt, W.B.: 1999, ‘Recent Advances in Mars Tectonics’, Fifth Int. Mars Conf. (abstract #6020), LPI Contribution No. 972, LPI, Houston, abstract #6020 (CD-ROM).

    Google Scholar 

  • Golombek, M.P., Plescia, J.B., and Franklin, B.J.: 1991, ‘Faulting and Folding in the Formation of Planetary Wrinkle Ridges’, Proc. 21s t Lunar Planet. Sci. Conf, 679–693.

    Google Scholar 

  • Greeley, R.: 1973, ‘Mariner 9 Photographs of Small Volcanic Structures on Mars’, Geology 1, 175–180.

    Article  ADS  Google Scholar 

  • Greeley, R., and Guest, J.E.: 1987, Geologic Map of the Eastern Equatorial Region of Mars, scale 1:15,000,000, U.S.G.S. Misc. Inv. Series Map I-1802-B

    Google Scholar 

  • Greeley, R., and Schneid, B.D.: 1991, ‘Magma Generation on Mars: Amounts/rates, and Comparisons with Earth, Moon, and Venus’, Science 254, 996–998.

    Article  ADS  Google Scholar 

  • Greeley, R., and Spudis, P.D.: 1978, ‘Volcanism in the Cratered Terrain Hemisphere of Mars’, J. Geophys. Res. 5, 453–455.

    Google Scholar 

  • Greeley, R., and Spudis, P.D.: 1981, ‘Volcanism on Mars’, Rev. Geophys. Space Phys. 19, 13–41.

    Article  ADS  Google Scholar 

  • Greeley, R., Skypeck, A., and Pollack, J.B.: 1993, ‘Martian Aeolian Features and Deposits: Comparisions with General Circulation Model Results’, J. Geophys. Res. 98, 3183–3193.

    Article  ADS  Google Scholar 

  • Greeley, R., Bridges, N.T.,Crown, D.A., Crumpler, L.S., Fagents, S.A., Mouginis-Mark, P.J. and Zimbleman, J.R.: 2000, ‘Volcanism on the Red Planet Mars’, in J.R. Zimbelman and T.K.P. Gregg (eds.), Environmental Effects on Volcanic Eruptions: from Deep Oceans to Deep Space, Kluwer Academic/Plenum Publ., New York, pp. 75–112.

    Chapter  Google Scholar 

  • Greeley, R., Kuzmin, R.O., and Haberle, R.M.: 2001, ‘Aeolian Processes and Their Effects on Understanding the Chronology of Mars’, Space Sci. Rev., this volume.

    Google Scholar 

  • Gulick, V.C., and Baker, V.R.: 1990, ‘Origin and Evolution of Valleys on Martian Volcanoes’, J. Geophys. Res. 95, 14,325–14, 344.

    Google Scholar 

  • Gulick, V.C., Tyler, D., McKay, C.P., and Haberle, R.M.: 1997, ‘Episodic ocean-induced CO2 greenhouse on Mars: Implications for fluvial valley formation’, Icarus 130, 68–86.

    Article  ADS  Google Scholar 

  • Halliday, A.N., Wänke, H., Birck, J.-L., and Clayton, R.N.: 2001, ‘The Accretion, Composition and Early Differentiation of Mars’, Space Sci. Rev, this volume.

    Google Scholar 

  • Hamlin, S.E., Kargel, J.S., Tanaka, K.L., Lewis, K.J., and MacAyeal, D.R.: 2000, ‘Preliminary Studies of Icy Debris Flows in the Martian Fretted Terrain’, 31s 1 Lunar and Planet. Sci. Conf, abstract #1785 (CD-ROM).

    Google Scholar 

  • Hartmann, W.K.: 1971, ‘Martian Cratering III: Theory of Crater Obliteration’, Icarus 15, 410–428.

    Article  ADS  Google Scholar 

  • Hartmann, W.K.: 1973, ‘Martian Surface and Crust: Review and Synthesis’, Icarus 19, 550–575.

    Article  ADS  Google Scholar 

  • Hartmann, W.K.: 1978, ‘Martian Cratering V: Toward an Empirical Martian Chronology, and its Implications’, Geophys. Res. Lett. 5, 450–452.

    Article  ADS  Google Scholar 

  • Hartmann, W.K.: 2001, ‘Martian Seeps and Their Relation to Youthful Geothermal Activity’, Space Sci. Rev., this volume.

    Google Scholar 

  • Hartmann, W.K., and Berman, D.C.: 2000, ‘Elysium Planitia Lava Flows: Crater Count Chronology and Geological Implications’, J. Geophys. Res. 105, 15,011–15, 025.

    Google Scholar 

  • Hartmann, W.K., and Neukum, G.: 2001, ‘Cratering Chronology and the Evolution of Mars’, Space Sci. Rev., this volume.

    Google Scholar 

  • Hartmann, W.K., et al.: 1981, ‘Chronology of Planetary Volcanism by Comparative Studies of Planetary Cratering’, Basaltic Volcanism on the Terrestrial Planets,Pergamon, New York, pp. 1049–1127.

    Google Scholar 

  • Head, J.W.: 2000a, ‘Tests for Ancient Polar Deposits on Mars: Morphology and Topographic Relationships of Esker-like Sinuous Ridges (Dorsa Argentea) Using MOLA Data’, Proc. 31 st Lunar Planet. Sci. Conf., abstract #1117 (CD-ROM).

    Google Scholar 

  • Head, J.W.: 2000b, ‘Tests for Ancient Polar Deposits on Mars: Assessment of Morphology and Topographic Relationships of Large Pits (Angusti and Sisyphi Cavi) using MOLA Data’, Proc. 31s t Lunar Planet. Sci. Conf., abstract #1118 (CD-ROM).

    Google Scholar 

  • Head, J.W., and Pratt, S.: 2001, ‘Extensive South Polar Cap in Middle Mars History: Analysis using Mars Orbiter Laser Altimeter ( MOLA) Data’, J. Geophys. Res., in review.

    Google Scholar 

  • Head, J.W., Kreslaysky, M.A., and Pratt, S.: 2001, ‘Northern Lowlands of Mars: Evidence for Widespread Volcanic Flooding and Tectonic Deformation in the Hesperian Period’, J. Geophys. Res., in review.

    Google Scholar 

  • Head, J.W., Hiesinger, H., Ivanov, M.A., Kreslaysky, M.A., Pratt, S., and Thomson, B.J.: 1999, ‘Possible Ancient Oceans on Mars: Evidence from Mars Orbiter Laser Altimeter Data’, Science 286, 2134–2137.

    Article  ADS  Google Scholar 

  • Herkenhoff, K.E., and Plaut, J.J.: 2000, ‘Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars’, Icarus 144, 243–253.

    Article  ADS  Google Scholar 

  • Hess, P.C. and Parmentier, E.M.: 2001, ‘Implications of magma ocean cumulate overturn for Mars’, 32nd Lunar and Planetary Sci. Conf., abstract #1319, (CD-ROM).

    Google Scholar 

  • Hiesinger, H. and Head, J. W.: 2000, ‘Characteristidcs and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data’, J. Geophys. Res. 105, 11999–12022.

    Article  ADS  Google Scholar 

  • Ivanov, B.: 2001, ‘Mars/Moon Cratering Rate Ratio Estimates’, Space Sci. Rev.,this volume. Ivanov, M. and Head, J. W.: 2001, ‘Chryse Planitia, Mars: Topographic configuration from MOLA data and tests for hypothesized lakes and shorelines’, J. Geophys. Res.,in press.

    Google Scholar 

  • Jones, K.L.: 1974, ‘Evidence for an Episode of Crater Obliteration Intermediate in Martian History’, J. Geophys. Res. 79, 3917–3931.

    Article  ADS  Google Scholar 

  • Kargel, J.S. and Strom, R.G.: 1990, ‘Ancient Glaciation on Mars’, Proc. 21 st Lunar Planet. Sci. Conf., 597–598.

    Google Scholar 

  • Kargel, J.S., Baker, V.R., Begét, J.E., Lockwood, J.F., Péwé, T.L., Shaw, J.S., and Strom, R.G.: 1996, ‘Evidence of Ancient Continental Glaciation in the Martian Northern Plains’, J. Geophys. Res. 100, 5351–5368.

    Article  ADS  Google Scholar 

  • Keszthelyi, L.,McEwen, A.S., and Thordarson, T.: 2000, ‘Terrestrial Analogs and Thermal Models for Martian Flood Lavas’, J. Geophys. Res. 105, 15,027–15,049.

    Google Scholar 

  • Kuzmin, R.O., Greeley, R., Rafkin, S.C.R., and Haberle, R.: 2001, ‘Wind Related Modification of Small Impact Craters on Mars’, Icarus, in review.

    Google Scholar 

  • Kreslaysky, M.A., and Head, J.W.: 1999, ‘Kilometer-scale Slopes on Mars and their Correlation with Geologic Units: Initial Results from Mars Orbiter Laser Altimeter (MOLA) Data’, J. Geophys. Res. 104, 21,911–21,924.

    Google Scholar 

  • Kreslaysky, M.A., and Head, J.W.: 2000, ‘Kilometer-scale Roughness of Mars: Results from MOLA Data Analysis’, J. Geophys. Res. 105, 26,695–26,711.

    Google Scholar 

  • Lucchitta, B.K., and Anderson, D.M.: 1980, ‘Martian Outflow Channels Sculptured by Glaciers’, in Reports of Planetary Geology Program 1980, NASA TM-81776, 271–273.

    Google Scholar 

  • Lucchitta, B.K., Ferguson, H.M. and Summers, C.: 1986, ‘Sedimentary deposits in the northern lowland plains’, Mars, J. Geophys. Res. 91, E166 - E174.

    Article  ADS  Google Scholar 

  • Lucchitta, B.K., McEwen, A.S., Clow, G.D., Geissler, P.E., Singer, R.B., Schultz, R.A., and Squyres, S.W.: 1992, ‘The canyon system on Mars’, in H.H. Kieffer, B.M. Jakosky, C.W. Snyder, and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 453–492.

    Google Scholar 

  • Malin, M.C., and Edgett, K.S.: 1999, ‘MGS MOC the First Year: Geomorphic Processes and Landforms’, Proc. 30 th Lunar Planet. Sci. Conf, abstract #1028.

    Google Scholar 

  • Malin, M.C., and Edgett, K.S.: 2000, ‘Evidence for Recent Groundwater Seepage and Surface Runoff on Mars’, Science 288, 2330–2335.

    Article  ADS  Google Scholar 

  • Malin, M.C. et al.: 1998, ‘Early Views of the Martian Surface from the Mars Orbiter Camera of Mars Global Surveyor’, Science 279 1681–1685.

    Google Scholar 

  • Mangold, N. and Allemand, R: 2001, ‘Topographic analysis of features related to ice on Mars’, Geophys. Res. Lett. 28, 407–410.

    Article  ADS  Google Scholar 

  • Mangold, N., Allemand, P., and Peulvast, J.-P.: 2000, ‘Topography of Ice-related Features on Mars’, 31 st Lunar Planet. Sci. Conf, abstract #1131 (CD-ROM).

    Google Scholar 

  • Mars Channel Working Group: 1983, ‘Channels and Valleys on Mars’, Geol. Soc. Amer. Bull. 94, 1035–1054.

    Article  Google Scholar 

  • Masson, P., Carr, M.H., Costard, F., Greeley, R., Hauber, E., and Jaumann, R.: 2001, ‘Geomorphologic Evidence for Liquid Water’, Space Sci. Rev., this volume.

    Google Scholar 

  • Masursky, H., Boyce, J.V., Dial, A.L., Jr., Schaber, G.G., and Strobell, M.E.: 1977, ‘Classification and Time of Formation of Martian Channels based on Viking Data’, J. Geophys. Res. 82, 4016–4037.

    Article  ADS  Google Scholar 

  • Maxwell, T.A.: 1982, ‘Orientation and Origin of Ridges in the Lunae Palus–Coprates Region of Mars’, J. Geophys. Res. 87, 97–108.

    Article  Google Scholar 

  • McCauley, J.F., Carr, M.H., Cutts, J.A., Hartmann, W.K., Masursky, H.,Milton, D.J., Sharp, R.P. and Wilhelms, D.E.: 1972, ‘Preliminary Mariner 9 Report on the Geology of Mars’, Icarus 17, 289–327, 1972.

    Article  ADS  Google Scholar 

  • McEwen, A.S., Malin, M.C., Carr, M.H., and Hartmann, W.K.: 1999, ‘Voluminous Volcanism on Early Mars Revealed in Valles Marineris’, Nature 397, 584–586.

    Article  ADS  Google Scholar 

  • McGill, G.E.: 1989, ‘Buried Topography of Utopia, Mars: Persistence of a Giant Impact Depression’, J. Geophys. Res. 94, 2753–2759.

    Article  ADS  Google Scholar 

  • McKay, C.P., and Davis, W.L.: 1991, ‘Duration of Liquid Water Habitats on Early Mars’, Icarus 90, 214–221.

    Article  ADS  Google Scholar 

  • McSween, H.Y., Jr., et al.: 1998, ‘Chemical, Multispectral, and Textural Constrains on the Composition and Origin of Rocks at the Mars Pathfinder Landing Site’, J. Geophys. Res. 104 8679–8716.

    Google Scholar 

  • Mége, D. and Masson, P.: 1996a, ‘Stress Models for Tharsis Formation, Mars’, Planet. Space Sci. 44, 1471–1497.

    Article  ADS  Google Scholar 

  • Mége, D. and Masson, P.: 19966, ‘A Plume Tectonics Model for the Tharsis Province, Mars.’ Planet. Space Sci. 44 1499–1546.

    Google Scholar 

  • Mellon, M.T. and Jakosky, B.M.: 1995, ‘The distribution and behavior of martian ground ice during past and present epochs’, J. Geophys. Res. 100, 11781–11799.

    Article  ADS  Google Scholar 

  • Mouginis-Mark, P.J.: 1979, ‘Martian Fluidized Crater Morphology: Variations with Crater Size, Latitude, Altitude, and Target Material’, J. Geophys. Res. 84, 8011–8022.

    Article  ADS  Google Scholar 

  • Mouginis-Mark, P.J., Wilson, L., and Zimbelman, R.J.: 1988, Polygenic eruptions on Alba Patera

    Google Scholar 

  • Mars: Evidence of channel erosion on pyroclastic flows’, Bull. Vol. 50, 361–379.

    Google Scholar 

  • Mouginis-Mark, P.J., Wilson, L. and Zuber, M.T.: 1992, ‘The Physical Volcanology of Mars’, in H.H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 424–452.

    Google Scholar 

  • Nelson, D.M., and Greeley, R.: 1999, ‘Geology of Xanthe Terra Outflow Channels and the Mars Pathfinder Landing Site’, J. Geophys. Res. 104, 8653–8670.

    Article  ADS  Google Scholar 

  • Neukum, G., and Hiller, K.: 1981, ‘Martian Ages’, J. Geophys. Res. 86, 3097–3121

    Article  ADS  Google Scholar 

  • Neukum, G., and Wise, D.U.: 1976, ‘Mars: Standard Crater Curve and Possible New Time Scale’, Science 194, 1381–1387.

    Article  ADS  Google Scholar 

  • Neukum, G., Ivanov, B., Hartmann, W.K.: 2001, ‘Cratering Records in the Inner Solar System in Relation to the Lunar Reference System’, Space Sci. Rev., this volume.

    Google Scholar 

  • Nummedal, D.: 1978, ‘The Role of Liquefaction in Channel Development on Mars’, Rep. Planet. Geol. Geophys. Program-1977–1988, NASA TM-79729, 257–259.

    Google Scholar 

  • Nummedal, D., and Prior, D.B.: 1981, ‘Generation of Martian Chaos and Channels by Debris Flow’, Icarus 45, 77–86.

    Article  ADS  Google Scholar 

  • Nyquist, L.E., Bogard, D.D., Shih, C.-Y., Greshake, A., Stöffier, D., and Eugster, 0.: 2001, ‘Ages and Geologic Histories of Martian Meteorites’, Space Sci. Rev., this volume.

    Google Scholar 

  • Parker, T.J., Saunders, R.S., and Schneeberger, D.M.: 1989, ‘Transitional Morphology in the West Deuteronilus Mensae Region of Mars: Implications for Modification of the Lowland/upland Boundary’, Icarus 82, 111–145.

    Article  ADS  Google Scholar 

  • Parker, T.J., Gorsline, D.S., Saunders, R.S., Pieri, D.C., and Schneeberger, D.M.: 1993, ‘Coastal Geomorphology of the Martian Northern Plains’, J. Geophys. Res. 98, 11,061–11,078.

    Google Scholar 

  • Phillips, R.J., Saunders, R.S., and Conel, J.E.: 1973, ‘Mars: Crustal Structure Inferred from Bouguer Gravity Anomalies’, J. Geophys. Res. 78, 4815–4820.

    Article  ADS  Google Scholar 

  • Phillips, et al.: 2001, ‘Ancient Geodynamics and Global-scale Hydrology on Mars’, Science 291 2587–2591.

    Google Scholar 

  • Pieri, D.C.: 1980, ‘Martian Valleys: Morphology, Distribution, Age and Origin’, Science 210, 895897.

    Google Scholar 

  • Plescia, J.B., and Golombek, M.P.: 1986, ‘Origin of Planetary Wrinkle Ridges Based on the Study of Terrestrial Analogs’, Geol. Soc. Amer. Bull. 97, 1289–1299.

    Google Scholar 

  • Plescia, J.B., and Saunders, R.S.: 1982, ‘Tectonic History of the Tharsis Region, Mars’, J. Geophys. Res. 87, 9775–9791.

    Article  ADS  Google Scholar 

  • Pruis, M.J., and Tanaka, K.L.: 1995, 26th Lunar Planet. Sci., 1147–1148.

    Google Scholar 

  • Schonfeld, E.: 1976, ‘On the Origin of Martian Channels’, Eos: Trans. AGU 57, 948.

    Google Scholar 

  • Schultz, R.A.: 1991, ‘Structural Development of Coprates Chasma and Western Ophir Planum, Valles Marineris Rift, Mars’, J. Geophys. Res. 96, 22,777–22, 792.

    Google Scholar 

  • Schultz, R.A.: 1998, ‘Multiple-Process Origin of Valles Marineris Basins and Troughs, Mars’, Planet. Space Sci. 46, 827–834.

    Article  ADS  Google Scholar 

  • Schultz, P.H. and Gault, D.E.; 1979, ‘Atmospheric effects on martian ejecta emplacement’, J. Geophys. Res. 84, 7669–7687.

    Article  ADS  Google Scholar 

  • Schultz, R.A., and Tanaka, K.L.: 1994, ‘Lithospheric-scale Buckling and Thrust Structures on Mars: the Coprates Rise and South Tharsis Ridge Belt’, J. Geophys. Res. 99, 8371–8385.

    Google Scholar 

  • Scott, D.H., and Tanaka, K.L.: 1986, Geologic Map of the Western Equatorial Region of Mars, scale 1:15,000,000, U.S.G.S. Misc. Inv. Ser. Map I-1802-A.

    Google Scholar 

  • Scott, D.H., and Dohm, J.M.: 1990, ‘Chronology and Global Distribution of Fault and Ridge Systems on Mars’, Proc. 20 th Lunar Planet. Sci. Conf, 487–501; Faults and Ridges: Historical Development in Tempe Terra and Ulysses Patera Regions of Mars’, ibid, 503–513.

    Google Scholar 

  • Scott, D.H., and Dohm, J.M.: 1992, ‘Mars Highland Channels: an Age Reassessment’, Proc. 23th Lunar Planet. Sci. Conf., #1251.

    Google Scholar 

  • Sharp, R.P., and Malin, M.C.: 1975, ‘Channels on Mars’, Geol. Soc. Amer. Bull. 86, 593–609. Sleep, N.H.: 1994, ‘Martian Plate Tectonics’, J. Geophys. Res. 99, 5639–5655.

    Google Scholar 

  • Sleep, N.H., and Phillips, R.J.: 1979, ‘An Isostatic Model for the Tharsis Province, Mars’, Geophys. Res. Lett. 6, 803–806.

    Article  ADS  Google Scholar 

  • Sleep, N.H., and Phillips, R.J.: 1985, ‘Gravity and Lithospheric Stress on the Terrestrial Planets with Reference to the Tharsis Region of Mars’, J. Geophys. Res. 90, 4469–4489.

    Article  ADS  Google Scholar 

  • Smith, D.E., and Zuber, M.T.: 1999, ‘The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure’ 31st DPS meeting Am. Astron. Soc.abstract #67.02.

    Google Scholar 

  • Smith, D.E., et al.: 1998, ‘Topography of the Northern Hemisphere of Mars from the Mars Obiter Laser Altimeter’, Science 279, 1686–1692.

    Article  ADS  Google Scholar 

  • Smith, D.E., et al.: 1999a, ‘The Global Topography of Mars and Implication for Surface Evolution’, Science 284, 1495–1503.

    Article  ADS  Google Scholar 

  • Smith, D.E., Sjogren, W.L., Tyler, G.L., Balmino, G., Lemoine, E.G., and Konopliv, A.S.: 1999b, ‘The Gravity Field of Mars: Results from Mars Global Surveyor’, Science 286, 94–97.

    Article  ADS  Google Scholar 

  • Soderblom, L., Condit, C., West, R., Herman, B., and Kreidler, T.: 1974, ‘Martian Planetwide Crater Distributions: Implications for Geologic History and Surface Processes’, Icarus 22, 239–263.

    Article  ADS  Google Scholar 

  • Solomon, S.C., and Head, J.W.: 1982, ‘Evolution of the Tharsis Province of Mars: The Importance of Heterogeneous Lithospheric Thickness and Volcanic Construction’, J. Geophys. Res. 87, 97559774.

    Google Scholar 

  • Spohn, T., Acuiia, M.H., Breuer, D., Golombek, M., Greeley, R., Halliday, A.N., Hauber, E., Jaumann, R., and Sohl, F.: 2001, ‘Geophysical Constraints on the Evolution of Mars’, Space Sci. Rev, this volume.

    Google Scholar 

  • Squyres, S.W., and Carr, M.H.: 1986, ‘Geomorphic Evidence for the Distribution of Ground Ice on Mars’, Science 231, 249–252.

    Article  ADS  Google Scholar 

  • Stöffler, D., and Ryder, G.: 2001, ‘Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System’, Space Sci. Rev., this volume.

    Google Scholar 

  • Strom, R.G., Croft, S.K., and Barlow, N.G.: 1992, ‘The Martian impact cratering record’, in H.H. Kieffer, B.M. Jakosky, C.W. Snyder, and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 383–423.

    Google Scholar 

  • Tanaka, K.L.: 1986, ‘The Stratigraphy of Mars’, J. Geophys. Res. 91, Suppl., 139–158.

    Google Scholar 

  • Tanaka, K.L.: 1990, ‘Tectonic History of the Alba Patera-Ceraunius Fossae Region of Mars’, Proc. 19th Lunar Planet. Sci. Conf., 515–523.

    Google Scholar 

  • Tanaka, K.L.: 1995, Mercury 24, 11.

    Google Scholar 

  • Tanaka, K.L., and Davis, P.A.: 1988, ‘Tectonic History of the Syria Planum Province of Mars’, J. Geophys. Res. 93, 14,893–14, 917.

    Google Scholar 

  • Tanaka, K.L., and Scott, D.H.: 1987, Geologic Map of the Polar Regions of Mars. U.S. Geologic Survey Miscellaneous Investigations Map I-1802-C, scale 1:75, 000, 000.

    Google Scholar 

  • Tanaka, K.L., Isbell, N., Scott, D., Greeley, R., and Guest, J.: 1987, ‘The Resurfacing History of Mars: A Synthesis of Digitized Viking-based Geology’, Proc. 18th Lunar Planet. Sci. Conf, 665–678.

    Google Scholar 

  • Tanaka, K.L., Golombek, M.P., and Banerdt, W.B.: 1991, ‘Reconciliation of Stress and Structural Histories of the Tharsis Region of Mars’, J. Geophys. Res. 96, 15,617–15, 633.

    Google Scholar 

  • Tanaka, K.L., Scott, D.H., and Greeley, R.: 1992, ‘Global Stratigraphy’, in H.H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 354–382.

    Google Scholar 

  • Tricart, J.: 1968, Periglacial Landscapes’, in R.W. Fairbridge (ed.), Encyclopedia of Geomorphology, Reinhold Book Co., pp. 829–833.

    Google Scholar 

  • Tricart, J.: 1969, Geomorphology of Cold Environments, Macmillan, London, 320 pp.

    Google Scholar 

  • Turcotte, D.L.: 1999, ‘Tectonics and Volcanism on Mars: What Do We and What Don’t We Know?’, Proc. 30th Lunar Planet. Sci. Conf, LPI, Houston, abstract #1187.

    Google Scholar 

  • Watters, T.R.: 1988, ‘Wrinkle Ridge Assemblages on the Terrestrial Planets’, J. Geophys. Res. 93, 15, 599–15616.

    Google Scholar 

  • Watters, T.R.: 1993, ‘Compressional Tectonism on Mars’, J. Geophys. Res. 98, 17,049–17, 060.

    Google Scholar 

  • Watters, T.R., and Maxwell, T.A.: 1983, ‘Crosscutting Relations and Relative Ages of Ridges and Faults in the Tharsis Region of Mars’, Icarus 56, 278–298.

    Article  ADS  Google Scholar 

  • Watters, T.R., and Maxwell, T.A.: 1986, ‘Orientation, Relative Age, and Extent of the Tharsis Plateau Ridge System’, J. Geophys. Res. 91, 8113–8125.

    Google Scholar 

  • Wilhelms, D.E., and Squyres, S.W.: 1984, ‘The Martian Hemispheric Dichotomy May Be Due to a Giant Impact’, Nature 309, 138–140.

    Article  ADS  Google Scholar 

  • Willeman, R.J., and Turcotte, D.L.: 1982, ‘The Role of Lithospheric Stress in the Support of the Tharsis Rise’, J. Geophys. Res. 82, 9793–9801.

    Article  ADS  Google Scholar 

  • Wilson, L., and Head, J.W.: 1994, ‘Mars: Review and Analysis of Volcanic Eruption Theory and Relationships to Observed Landforms’, Rev. Geophysics 32, 221–263.

    Article  ADS  Google Scholar 

  • Wilson, L. and Head, J. W.: 2000, ‘Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: Models and implications’, 31st Lunar and Planetary Sci. Conf., abstract #1371, (CD-ROM).

    Google Scholar 

  • Wilson, L. and Head, J. W.: 2001, ‘Giant dike swarms and related graben systems in the Tharsis province of Mars’, 32nd Lunar and Planetary Sci. Conf., abstract #1153, (CD-ROM).

    Google Scholar 

  • Wise, D.U., Golombek, M.P., and McGill, G.E.: 1979a, ‘Tectonic Evolution of Mars’, J. Geophys. Res. 84, 7934–7939.

    Article  ADS  Google Scholar 

  • Wise, D.U., Golombek, M.P., and McGill, G.E.: 1979b, ‘Tharsis Province of Mars: Geologic Sequence, Geometry and a Deformation Mechanism’, Icarus 38, 456–472.

    Article  ADS  Google Scholar 

  • Yung, Y.L., and Pinto, J.P.: 1978, ‘Primitive Atmosphere and Implications for the Formation of Channels on Mars’, Nature 288, 735–738.

    Google Scholar 

  • Zuber, M.T., and Smith, D.E.: 1999, ‘Interpretation of New Gravity and Topography Data for Mars’, 31st DPS meeting, Am. Astron. Soc., abstract #43.03.

    Google Scholar 

  • Zuber, M.T., et al.: 2000, ‘Internal Structure and Early Thermal Evolution of Mars from Mars Global Surveyor Topography and Gravity’, Science 287, 1788–1793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Head .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Head, J.W. et al. (2001). Geological Processes and Evolution. In: Kallenbach, R., Geiss, J., Hartmann, W.K. (eds) Chronology and Evolution of Mars. Space Sciences Series of ISSI, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1035-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1035-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5725-9

  • Online ISBN: 978-94-017-1035-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics