Skip to main content

Part of the book series: Synthese Library ((SYLI,volume 280))

Abstract

Systems of explicit mathematics were introduced in Feferman [7, 9] in order to give a logical account to Bishop-style constructive mathematics, and they soon turned out to be very important for the proof-theoretic analysis of subsystems of second order arithmetic and set theory. Moreover, systems of explicit mathematics provide a logical framework for functional programming languages.

Research supported by the Swiss National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P., ‘Frege Structures and the Notion of Proposition, Truth and Set’, in J. Barwise et al. (eds), The Kleene Symposium, North-Holland, 1980, pp. 31–59.

    Google Scholar 

  2. Beeson, M. J., Foundations of Constructive Mathematics: Metamathematical Studies, Springer, Berlin, 1985.

    Book  Google Scholar 

  3. Buss, S. R., Bounded Arithmetic, Bibliopolis, Napoli, 1986.

    Google Scholar 

  4. Cantini, A., Logical Frameworks for Truth and Abstraction, North-Holland, Amsterdam, 1996.

    Google Scholar 

  5. Cantini, A., ‘On the Computational Content of Weak Applicative Theories with Totality I’, 1996, Preliminary Draft.

    Google Scholar 

  6. Cantini, A. and Minari, P., ‘Uniform Inseparability in Explicit Mathematics’, J. Symbolic Logic, 64 (1) (1999), 313–326.

    Article  Google Scholar 

  7. Feferman, S., ‘A Language and Axioms for Explicit Mathematics’, in J. Crossley (ed.), Algebra and Logic, LNM 450, Springer, Berlin, 1975, pp. 87–139.

    Chapter  Google Scholar 

  8. Feferman, S., ‘A Theory of Variable Types’, Rev. Colombiana Mat., 19 (1975), 95–105.

    Google Scholar 

  9. Feferman, S., ‘Constructive Theories of Functions and Classes’, in M. Boffa et al. (eds), Logic Colloquium ‘78, North-Holland, Amsterdam, 1979, pp. 159–224.

    Google Scholar 

  10. Feferman, S., ‘Iterated Inductive Fixed-Point Theories: Application to Hancock’s Conjecture’, in G. Metakides (ed.), The Patras Symposion, North-Holland, Amsterdam, 1982, pp. 171–196.

    Chapter  Google Scholar 

  11. Feferman, S., ‘Hilbert’s Program Relativized: Proof-Theoretical and Foundational Studies’, J. Symbolic Logic, 53 (2) (1988), 364–384.

    Article  Google Scholar 

  12. Feferman, S., ‘Weyl Vindicated: “Das Kontinuum” 70 Years Later’, in Terni e prospettive della logica e della filosofia della scienza contemporanee, CLUEB, Bologna, 1988, pp. 59–93.

    Google Scholar 

  13. Feferman, S., ‘Polymorphic Typed Lambda-Calculi in a Type-Free Axiomatic Framework’, in W. Sieg (ed.), Logic and Computation, Contemp. Math. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 101–136.

    Chapter  Google Scholar 

  14. Feferman, S., ‘Logics for Termination and Correctness of Functional Programs’, in Y. N. Moschovakis (ed.), Logic from Computer Science, MSRI Publications 21, Springer, Berlin, 1991, pp. 95–127.

    Google Scholar 

  15. Feferman, S., ‘Logics for Termination and Correctness of Functional programs II: Logics of Strength PRA’, in R. Aczel, H. Simmons, and S. S. Wainer (eds), Proof Theory, Cambridge University Press, Cambridge, 1992, pp. 195–225.

    Google Scholar 

  16. Feferman, S., ‘Definedness’, Erkenntnis, 43 (1995), 295–320.

    Article  Google Scholar 

  17. Feferman, S. and Jäger, G., ‘Systems of Explicit Mathematics with Non-Constructive p-Operator. Part I’, Ann. Pure Appl. Logic, 65 (3) (1993), 243–263.

    Article  Google Scholar 

  18. Feferman, S. and Jäger, G., ‘Systems of Explicit Mathematics with Non-Constructive p-Operator. Part II’, Ann. Pure Appl. Logic, 79 (1) (1996).

    Google Scholar 

  19. Feferman, S. and Sieg, W., ‘Proof-Theoretic Equivalences Between Classical and Constructive Theories for Analysis’, in W. Buchholz et al. (eds), Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, LNM 897, Springer, Berlin, 1981, pp. 78–142.

    Chapter  Google Scholar 

  20. Ferreira, F., ‘Polynomial Time Computable Arithmetic’, Contemp. Math., 106 (1990), 137–156.

    Article  Google Scholar 

  21. Glass, T., Standardstrukturen für Systeme Expliziter Mathematik, PhD Thesis, Westfälische Wilhelms-Universität Münster, 1993.

    Google Scholar 

  22. Glass, T. and Strahm, T., ‘Systems of Explicit Mathematics with Non-Constructive p-Operator and Join’, Ann. Pure Appl. Logic, 82 (1996), 193–219.

    Article  Google Scholar 

  23. Hayashi, S. and Nakano, H., PX: A Computational Logic, MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  24. Hinman, P. G., Recursion-Theoretic Hierarchies, Springer, Berlin, 1978.

    Google Scholar 

  25. Jäger, G., ‘A Well-Ordering Proof for Feferman’s Theory To’, Archiv für mathematische Logik und Grundlagenforschung, 23 (1983), 65–77.

    Article  Google Scholar 

  26. Jäger, G., Theories for Admissible Sets: A Unifying Approach to Proof Theory, Bibliopolis, Napoli, 1986.

    Google Scholar 

  27. Jäger, G., ‘Induction in the Elementary Theory of Types and Names’, in E. Börger et al. (eds), Computer Science Logic ‘87, LNCS 329, Springer, Berlin, 1988, pp. 118–128.

    Google Scholar 

  28. Jäger, G., ‘Type Theory and Explicit Mathematics’, in H.-D. Ebbinghaus et al. (eds), Logic Colloquium ‘87, North-Holland, Amsterdam, 1989, pp. 117–135.

    Google Scholar 

  29. Jäger, G., ‘Power Types in Explicit Mathematics’, J. Symbolic Logic, 62 (1997), 1142–1146.

    Article  Google Scholar 

  30. Jäger, G. and Pohlers, W., ‘Eine beweistheoretische Untersuchung von (A -CA) + (BI) und verwandter Systeme’, in Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, 1982, pp. 1–28.

    Google Scholar 

  31. Jäger, G. and Strahm, T., ‘Totality in Applicative Theories’, Ann. Pure Appl. Logic, 74 (2) (1995), 105–120.

    Article  Google Scholar 

  32. Jäger, G. and Strahm, T., ‘Some Theories with Positive Induction of Ordinal Strength cpw0’, J. Symbolic Logic, 61 (3) (1996), 818–842.

    Article  Google Scholar 

  33. Jäger, G. and Strahm, T., ‘The Proof-Theoretic Strength of the Suslin Operator in Applicative Theories’, in preparation.

    Google Scholar 

  34. Jansen, D., Ontologische Aspekte expliziter Mathematik, Master’s Thesis, Mathematisches Institut, Universität Bem, 1997.

    Google Scholar 

  35. Kahle, R., Einbettung des Beweissystems LAMBDA in eine Theorie von Operationen und Zahlen, Master’s Thesis, Universität München, 1992.

    Google Scholar 

  36. Kahle, R., ‘N-Strictness in Applicative Theories’, Archive for Mathematical Logic,to appear.

    Google Scholar 

  37. Kahle, R., ‘Frege Structures for Partial Applicative Theories’, J. Logic Computation,to appear.

    Google Scholar 

  38. Kahle, R., Universes over Frege Structures, Tech. Rep. IAM-96–010, Institut für Informatik und angewandte Mathematik, Universität Bern, May 1996.

    Google Scholar 

  39. Kahle, R., Applicative Theories and Frege Structures, PhD Thesis, Institut für Informatik und angewandte Mathematik, Universität Bem, 1997.

    Google Scholar 

  40. Marzetta, M., Predicative Theories of Types and Names, PhD Thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 1993.

    Google Scholar 

  41. Marzetta, M. and Strahm, T., ‘The p Quantification Operator in Explicit Mathematics with Universes and Iterated Fixed Point Theories with Ordinals’, Arch. Math. Logic, 37 (1998), 391–413.

    Article  Google Scholar 

  42. Schlüter, A., ‘A Theory of Rules for Enumerated Classes of Functions’, Arch. Math. Logic, 34 (1995), 47–63.

    Google Scholar 

  43. Strahm, T., Theories with Self-Application of Strength PRA, Master’s Thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 1992.

    Google Scholar 

  44. Strahm, T., On the Proof Theory of Applicative Theories, PhD Thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 1996.

    Google Scholar 

  45. Strahm, T., ‘Partial Applicative theories and Explicit Substitutions’, J. Logic Comput., 6 (1) (1996).

    Google Scholar 

  46. Strahm, T., ‘Polynomial Time Operations in Explicit Mathematics’, J. Symbolic Logic, 62 (1997), 575–594.

    Article  Google Scholar 

  47. Talcott, C., ‘A Theory for Program and Data Type Specification’, Theoret. Comput. Sci., 104 (1992), 129–159.

    Article  Google Scholar 

  48. Troelstra, A. and van Dalen, D., Constructivism in Mathematics, Vol. I, North-Holland, Amsterdam, 1988.

    Google Scholar 

  49. Troelstra, A. and van Dalen, D., Constructivism in Mathematics, Vol. II, North-Holland, Amsterdam, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jäger, G., Kahle, R., Strahm, T. (1999). On Applicative Theories. In: Cantini, A., Casari, E., Minari, P. (eds) Logic and Foundations of Mathematics. Synthese Library, vol 280. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2109-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2109-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5201-8

  • Online ISBN: 978-94-017-2109-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics