Skip to main content

Methane Oxidation in Landfill Cover Soils

  • Chapter
Trace Gas Emissions and Plants

Abstract

Methane is a greenhouse gas contributing about 19% to the enhanced greenhouse effect (IPCC, 1994). Anthropogenic activities, such as rice cultivation, animal production, fossil fuel burning and waste management have resulted in a dramatic increase of the atmospheric CH4 concentration during the last 200 years. Its actual concentration is 1.72 ppmv, currently increasing at a rate of 0.6–0.8% per year (Houghton et al.,1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitchison, E. (1993). Options for controlling methane emission from landfill sites. In: Proceedings of the international IPCC workshop. A.R. van Amstel (ed.), pp. 221–230, Amersfoort, The Netherlands.

    Google Scholar 

  • Ball, B.C., Dobbie, K.E., Parker, J.P. and Smith, K.A. (1997). The influence of gas transport and porosity on methane oxidation in soils. J. Geophys. Res. (In press).

    Google Scholar 

  • Bédard, C. and Knowles, R. (1989). Physiology, biochemistry and inhibitors of CH, and NH4* and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53, 68–84.

    Google Scholar 

  • Bender, M. and Conrad, R. (1992). Kinetics of CH, oxidation in oxic soils exposed to ambient or high CH, mixing ratios. FEMS Microbiol. Ecol. 101, 261–270.

    Google Scholar 

  • Bender, M. and Conrad, R. (1995). Effect of CH, concentration and soil conditions on the induction of CH, oxidation activity. Soil Biol. Biochem. 27, 1517–1527.

    Article  Google Scholar 

  • Bingemer, H.G. and Crutzen, P.J. (1987). The production of methane from solid waste. J. Geophys. Res. 92, 2181 2187.

    Google Scholar 

  • Boeckx, P. and Van Cleemput, O. (1996a). Flux estimates from methanogenesis and methanotrophy: landfills, rice paddies, natural wetlands and aerobic soils. Environ. Monitor. Assess. 42, 189–207.

    Article  Google Scholar 

  • Boeckx, P. and Van Cleemput, O. (1996b). Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature and nitrogen-turnover. J. Environ. Qual. 25, 178–183.

    Article  Google Scholar 

  • Boeckx, P., Van Cleemput, O. and Villaralvo, I. (1996). Methane emission from a landfill and the methane oxidising capacity of its covering soil. Soil Biol. Biochem. 28, 1397–1405.

    Article  Google Scholar 

  • Bogner, J. (1992). Anaerobic burial of refuse in landfills: increased atmospheric methane and implications for increased carbon storage. In: Trace Gas Exchange in a Global Perspective. D.S. Ojima and B.H. Svensson (eds.), Ecol. Bull. 42 98–108.

    Google Scholar 

  • Bogner, J., Spokas, K., Burton, E., Sweeney, R. and Corona, V. (1995). Landfills as atmospheric methane sources and sinks. Chemosphere 31, 4119–4130.

    Article  Google Scholar 

  • Börjesson, G. (1997). Methane oxidation in landfill cover soils. Doctoral dissertation. ISSN 1401–6246, ISBN 91–5765298–8. Uppsala, Sweden.

    Google Scholar 

  • Börjesson, G. and Svensson, B.H. (1997). Effects of a gas extraction interruption on emissions of methane and carbon dioxide from a landfill and on methane oxidation in the cover soil. J. Environ. Qual. (in press).

    Google Scholar 

  • Bowman, J.P., Sly, L.I., Nichols, P.D. and Hayward, A.C. (1993). Revised taxonomy of methanotrophs: Description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylisinus and Methylocystis species and a proposal that the family of Methylococcaceae includes only the group I methanotrophs. lnt. J Syst. Bacteriol. 43, 735–753.

    Article  Google Scholar 

  • Chanton, J.P., Liptay, K., Biggerstaff, C., Czepiel, P., Mosher, B. and Herz, W. (1997). Use of stable isotopes to ditermine methane oxidation in landfills. In: Joint North American-European Workshop on Measurement and Modelling of Methane Fluxes from Landfills. K.A. Smith and J. Bogner (eds.), pp. A11, IGAC Core Project of IGBP, Cambridge MA, USA.

    Google Scholar 

  • Cicerone, R.J. and Oremland, R.S. (1988). Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 2, 299–307.

    Article  Google Scholar 

  • Conrad, R. (1995). Soil microbial processes involved in production and consumption of atmospheric trace gases. Adv. Microbiol. Ecol. 14, 207–250.

    Article  Google Scholar 

  • Crill, P.M., Martikainen, Nykänen, H. and Silvola (1994). Temperature and N fertilisation effects on methane oxidation in drained peatland. Soil Biol. Biochem. 26, 1331–1339.

    Google Scholar 

  • Czepiel, P.M., Mosher, B., Crill, P.M. and Harris, R.C. (1996). Quantifying the effect of oxidation on landfill methane emission. J. Geophys. Res. 16, 16721–16729.

    Article  Google Scholar 

  • Dalton, H. and Hocknall, M.D. (1990). Methane oxidation: is anaerobic methane oxidation possible? In: Landfill Microbiology: Research and Development Workshop. P. Lawson and Y.R. Alston (eds.), pp. 102–113, ETSU, Harwell, UK.

    Google Scholar 

  • Dalton, H. and Leak, D.J. (1985). Methane oxidation by micro-organisms. In: Microbial Gas Metabolism: mechanistic, metabolic and biotechnological aspects. R.K. Poole and C.S. Dow (eds.), pp. 173–200, Academic Press, London, UK.

    Google Scholar 

  • Dalton, H., Wilkins, P.C. and Jiang, Y. (1993). Structure and mechanism of action the hydroxylase of soluble methane monooxygenase. In: Microbial Growth on C-1 Compounds. J.C. Murrell and D.P. Kelly (eds.), pp. 65–80, Intercept Andover, UK.

    Google Scholar 

  • De Visscher, A., Boeckx, P. and Van Cleemput, O. (1997). Interaction between nitrous oxide formation and methane oxidation in soils: influence of cation exchange phenomena. J. Environ. Qual. (in press).

    Google Scholar 

  • Doom, M. and Barlax, M. (1995). Estimates of global methane emission from landfills and open dumps In: U.S. EPA Report EPA–60018–95–019, Office of Research and Development, Washington, D.C.

    Google Scholar 

  • Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A. and Maskell, K. (1996). Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hütsch, B.W., Webster, C.P. and Powlson, D.S. (1994). Methane oxidation in soil as affected by land use soil pH and N fertilisation. Soil Biol. Biochem. 26, 1613–1622.

    Article  Google Scholar 

  • Hyman, M. and Wood, P.M. (1983). Methane oxidation by Nitrosomonas europaea. J. Biochem. 212, 31–37.

    Google Scholar 

  • IPCC, Intergovernmental Panel on Climate Change (1994). Climate Change 1994, pp. 339. Cambridge University Press, Cambridge.

    Google Scholar 

  • IPCC/OECD (1995). Methane Emission from Waste Inventory Phase II. Program Update October 25, 1995.

    Google Scholar 

  • Jones, H.A. and Nedwell, D.B. (1993). Methane emission and oxidation in a landfill cover soil. FEMS Microbiol. Ecol. 102, 185–195.

    Article  Google Scholar 

  • Keller, M., Mitre, M.E. and Stallard, R.F. (1990). Consumption of atmospheric methane in Central Panama: effects of agricultural development. Global Biogeochem. Cycles 4, 21–27.

    Article  Google Scholar 

  • Kightley, D., Nedwell, D.B. and Cooper, M. (1995). Capacity of methane oxidation in landfill cover soils measured in laboratory-scale microcosms. Appl. Environ. Microbio!. 61, 592–601.

    Google Scholar 

  • King, G.M. and Adamsen, A.P.S. (1992). Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra. Appl. Environ. Mierobiol. 58, 2758–2763.

    Google Scholar 

  • King, G.M. and Schnell, S. (1994a). Ammonium and nitrite inhibition of methane oxidation by MethylobacterAlbus BG8 and Meth - ylosinus trichosporium OB3b at low methane concentrations. AppI. Environ. Microbial. 60, 3508–3513.

    Google Scholar 

  • King, G.M. and Schnell, S. (1994b). Effect of increasing atmospheric concentration on ammonium inhibition of soil methane consumption. Nature 370, 282–284.

    Article  Google Scholar 

  • Kjeldsen, P. and Fischer, E.V. (1995). Landfill gas migration–field investigation at Skellingsted landfill, Denmark. Waste Manage. Res. 13, 467–484.

    Google Scholar 

  • Kjeldsen, P., Dalager, A. and Broholm, K. (1997). Attenuation of methane and non methane organic compounds in landfill gas affected soils. J. Air Waste Manage. Assoc. (in press).

    Google Scholar 

  • Koschorreck, M. and Conrad, R. (1993). Oxidation of atmospheric methane in soil: measurements in the field, in soil cores and in soil samples. Global Biogeochem. Cycles 7, 109–121.

    Article  Google Scholar 

  • Kreileman, G.J.J. and Bouwman, A.F. (1994). Computing land use emission of greenhouse gases. Water Air Soil Poll. 76, 231–258.

    Article  Google Scholar 

  • Lelieveld, J. and Crutzen, P.J. (1993). Methane emission into the atmosphere, an overview. In: Methane and Nitrous oxide. A.R. van Amstel (ed.), pp. 143–163, International IPCC workshop, Amersfoort, The Netherlands.

    Google Scholar 

  • Lubina, C., Bergamaschi, R., Konigstedt, Fischer, H., Veltkamp, A.C. and Zwaagstra, O. (1997). Isotope studies of methane oxidation in landfill cover soils. In: Joint North American-European Workshop on Measurement and Modelling of Methane Fluxes from Landfills. K.A. Smith and J. Bogner (eds.), pp. A16, IGAC Core Project of IGBP, Cambridge, MA, USA.

    Google Scholar 

  • Matthews, E., Roulet, N., Pinto, J. and Bogner, J. (1993). Methane (CH,). In: Report of the Third Workshop of the Global Emission Inventory Activity (GELA). Matthews, E., Roulet, N., Pinto, J. and Bogner, J, (ed.), pp. 35–42, The Netherlands.

    Google Scholar 

  • Megraw, S.R. and Knowles, R. (1989). Isolation, characterisation and nitrification potential of a methylotroph and two heterotrophic bacteria from a consortium showing methane-dependent nitrification. FEMS Microbiol. Ecol. 62, 367–374.

    Article  Google Scholar 

  • Mosier, A., Schimel, D., Valentine, D., Bronson, D. and Parton, W. (1991). Methane and nitrous oxide fluxes in native, fertilised and cultivated grasslands. Nature 350, 330–332.

    Article  Google Scholar 

  • Nozhevnikova, A.N., Lifshitz, A.B., Lebvedev, V.S. and Zavarzin, G.A. (1993). Emission of methane into the atmosphere from landfills in the former USSR. Chemosphere 20, 401–417.

    Article  Google Scholar 

  • Peer, R.L., Thorneloe, S.A. and Epperson, D.L. (1993). A comparison of methods for estimating global methane emissions from landfills. Chemosphere 26, 387–400.

    Article  Google Scholar 

  • Richards, K. (1989). Landfill gas: working with GAIA. Biodeterio. Abst. 3, 525–539.

    Google Scholar 

  • Roslev, P. and King, G.M. (1994). Survival and Recovery of methanotrophic bacteria starved under oxic and anoxic conditions. Appl. Environ. Microbio!. 60, 2602–2608.

    Google Scholar 

  • Schnell, S. and King, G. (1994). Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl. Environ. Microbiol. 60, 3514–3521.

    Google Scholar 

  • Sitaula, B.K. and Bakken, L.R. (1993). Nitrous oxide release from spruce forest soil: relationships with nitrification, methane uptake, temperature, moisture and fertilisation. Soil Biol. Biochem. 25, 1415–1421.

    Article  Google Scholar 

  • Steudler, P.A., Bowden, J.M., Melillo, J.M. and Aber, J.D. (1989). Influence of nitrogen fertilisation on methane uptake in temperate forest soils. Nature 341, 314–316.

    Article  Google Scholar 

  • Striegl, RG., McConnaughey, T.A., Thorstenson, D.C., Weeks, E.P. and Woodward, J.C. (1992). Consumption of atmospheric methane by desert soils. Nature 357, 145–147.

    Article  Google Scholar 

  • van Amstel, A.R., Swart, RJ., Kroll, M.S., Beek, J.P., Bouwman, A.F. and van der Hoek, K.W. (1993). Methane, the other greenhouse gas. In: RIVM Report No 481507001, pp. 108, The Netherlands.

    Google Scholar 

  • Whalen, S.C., Reeburgh, W.S. and Sandbeck, K.A. (1990). Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56, 3405–3411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boeckx, P., Van Cleemput, O. (2000). Methane Oxidation in Landfill Cover Soils. In: Singh, S.N. (eds) Trace Gas Emissions and Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3571-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3571-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5554-5

  • Online ISBN: 978-94-017-3571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics