Skip to main content

The Reproductive System

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 886))

Abstract

Correct sexual development is arguably the most important trait in an organism’s life history since it is directly related to its genetic fitness. The developing gonad houses the germ cells, the only legacy we pass on to subsequent generations. Given the pivotal importance of correct reproductive function, it is confounding that disorders of sex development (DSDs) are among the most common congenital abnormalities in humans (Lee et al. J Pediatr Urol 8(6):611–615, 2012). Urogenital development is a highly complex process involving coordinated interactions between molecular and hormonal pathways in a tightly regulated order. The controls that regulate some of the key events in this process are beginning to be unraveled. This chapter provides an overview of our understanding of urogenital development from the gonads to the urogenital ducts and external genitalia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adriaenssens E, Lottin S, Dugimont T, Fauquette W, Coll J, Dupouy JP, Boilly B, Curgy JJ (1999) Steroid hormones modulate H19 gene expression in both mammary gland and uterus. Oncogene 18(31):4460–4473. doi:10.1038/sj.onc.1202819

    Article  CAS  PubMed  Google Scholar 

  • Allgeier SH, Lin TM, Moore RW, Vezina CM, Abler LL, Peterson RE (2010) Androgenic regulation of ventral epithelial bud number and pattern in mouse urogenital sinus. Dev Dyn 239(2):373–385. doi:10.1002/dvdy.22169

    Article  PubMed  PubMed Central  Google Scholar 

  • Angiolini E, Fowden A, Coan P, Sandovici I, Smith P, Dean W, Burton G, Tycko B, Reik W, Sibley C, Constancia M (2006) Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27(Suppl A):S98–S102, doi:S0143-4004(06)00003-8 [pii]

    Article  PubMed  Google Scholar 

  • Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, Scherer G (2006) Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74(1):195–201

    Article  CAS  PubMed  Google Scholar 

  • Behringer RR (1994) The in vivo roles of mullerian-inhibiting substance. Curr Top Dev Biol 29:171–187

    Article  CAS  PubMed  Google Scholar 

  • Behringer RR, Finegold MJ, Cate RL (1994) Mullerian-inhibiting substance function during mammalian sexual development. Cell 79(3):415–425, doi:0092-8674(94)90251-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, Harrison WR, Behringer RR, Overbeek PA (2000) A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 26(4):490–494

    Article  CAS  PubMed  Google Scholar 

  • Borum K (1961) Oogenesis in the mouse. A study of the meiotic prophase. Exp Cell Res 24:495–507

    Article  CAS  PubMed  Google Scholar 

  • Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro K, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Retinoid signaling determines germ cell fate in mice. Science 312(5773):596–600, doi:1125691 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Brennan J, Capel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5(7):509–521. doi:10.1038/nrg1381

    Article  CAS  PubMed  Google Scholar 

  • Britt KL, Kerr J, O’Donnell L, Jones ME, Drummond AE, Davis SR, Simpson ER, Findlay JK (2002) Estrogen regulates development of the somatic cell phenotype in the eutherian ovary. FASEB J 16(11):1389–1397. doi:10.1096/fj.01-0992com

    Article  CAS  PubMed  Google Scholar 

  • Britt KL, Saunders PK, McPherson SJ, Misso ML, Simpson ER, Findlay JK (2004) Estrogen actions on follicle formation and early follicle development. Biol Reprod 71(5):1712–1723. doi:10.1095/biolreprod.104.028175

    Article  CAS  PubMed  Google Scholar 

  • Bullejos M, Bowles J, Koopman P (2002) Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. Dev Dyn 225(1):95–99. doi:10.1002/dvdy.10128

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne PS, Buehr M, McLaren A (1988) XY follicle cells in ovaries of XX – XY female mouse chimaeras. Development 104(4):683–688

    CAS  PubMed  Google Scholar 

  • Capel B, Albrecht KH, Washburn LL, Eicher EM (1999) Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 84(1–2):127–131

    Article  CAS  PubMed  Google Scholar 

  • Cohn MJ (2004) Developmental genetics of the external genitalia. Adv Exp Med Biol 545:149–157

    Article  PubMed  Google Scholar 

  • Couse JF, Hewitt SC, Bunch DO, Sar M, Walker VR, Davis BJ, Korach KS (1999) Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science 286(5448):2328–2331, doi:8111 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Coveney D, Cool J, Oliver T, Capel B (2008) Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc Natl Acad Sci U S A 105(20):7212–7217, doi:0707674105 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel CW, Smith GH (1999) The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 4(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Du H, Taylor HS (2004) Molecular regulation of mullerian development by Hox genes. Ann N Y Acad Sci 1034:152–165, doi:1034/1/152 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Frojdman K, Paranko J, Kuopio T, Pelliniemi LJ (1989) Structural proteins in sexual differentiation of embryonic gonads. Int J Dev Biol 33(1):99–103

    CAS  PubMed  Google Scholar 

  • Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346(6281):245–250. doi:10.1038/346245a0

    Article  CAS  PubMed  Google Scholar 

  • Hannema SE, Hughes IA (2007) Regulation of Wolffian duct development. Horm Res 67(3):142–151, doi:96644 [pii]

    CAS  PubMed  Google Scholar 

  • Harry JL, Koopman P, Brennan FE, Graves JA, Renfree MB (1995) Widespread expression of the testis-determining gene SRY in a marsupial. Nat Genet 11(3):347–349. doi:10.1038/ng1195-347

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto N, Kubokawa R, Yamazaki K, Noguchi M, Kato Y (1990) Germ cell deficiency causes testis cord differentiation in reconstituted mouse fetal ovaries. J Exp Zool 253(1):61–70. doi:10.1002/jez.1402530109

    Article  CAS  PubMed  Google Scholar 

  • Henkes LE, Davis JS, Rueda BR (2003) Mutant mouse models and their contribution to our knowledge of corpus luteum development, function and regression. Reprod Biol Endocrinol 1:87. doi:10.1186/1477-7827-1-87

    Article  PubMed  PubMed Central  Google Scholar 

  • Hennighausen L, Robinson GW (2005) Information networks in the mammary gland. Nat Rev Mol Cell Biol 6(9):715–725. doi:10.1038/nrm1714

    Article  CAS  PubMed  Google Scholar 

  • Hens JR, Wysolmerski JJ (2005) Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res 7(5):220–224, doi:bcr1306 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubertus J, Lacher M, Rottenkolber M, Muller-Hocker J, Berger M, Stehr M, von Schweinitz D, Kappler R (2011) Altered expression of imprinted genes in Wilms tumors. Oncol Rep 25(3):817–823. doi:10.3892/or.2010.1113

    Article  CAS  PubMed  Google Scholar 

  • Josso N (1970a) Action of human testis on rat fetus Muller’s duct in organ culture. C R Acad Sci Hebd Seances Acad Sci D 271(23):2149–2152

    CAS  PubMed  Google Scholar 

  • Josso N (1970b) Action of testosterone on the Wolffian duct of rat fetus in organ culture. Arch Anat Microsc Morphol Exp 59(1):37–49

    CAS  PubMed  Google Scholar 

  • Ju X, Li Z, Zhang C, Qin C, Shao P, Li J, Li P, Cao Q, Zhang W, Wang Z, Yin C (2013) Clinical aspects and molecular genetics of persistent mullerian duct syndrome associated with transverse testicular ectopia: report of three cases. Urol Int 90(1):83–86, doi:000339599 [pii]

    Article  PubMed  Google Scholar 

  • Kanai Y, Hayashi Y, Kawakami H, Takata K, Kurohmaru M, Hirano H, Nishida T (1991) Effect of tunicamycin, an inhibitor of protein glycosylation, on testicular cord organization in fetal mouse gonadal explants in vitro. Anat Rec 230(2):199–208. doi:10.1002/ar.1092300207

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Kawakami H, Takata K, Kurohmaru M, Hirano H, Hayashi Y (1992) Involvement of actin filaments in mouse testicular cord organization in vivo and in vitro. Biol Reprod 46(2):233–245

    Article  CAS  PubMed  Google Scholar 

  • Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K, Higashinakagawa T (1998) Male-to-female sex reversal in M33 mutant mice. Nature 393(6686):688–692. doi:10.1038/31482

    Article  CAS  PubMed  Google Scholar 

  • Keil KP, Mehta V, Abler LL, Joshi PS, Schmitz CT, Vezina CM (2012) Visualization and quantification of mouse prostate development by in situ hybridization. Differentiation 84(3):232–239, doi:S0301-4681(12)00106-5 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinman HK, Weeks BS, Schnaper HW, Kibbey MC, Yamamura K, Grant DS (1993) The laminins: a family of basement membrane glycoproteins important in cell differentiation and tumor metastases. Vitam Horm 47:162–186

    Google Scholar 

  • Kobayashi A, Stewart CA, Wang Y, Fujioka K, Thomas NC, Jamin SP, Behringer RR (2011) beta-Catenin is essential for Mullerian duct regression during male sexual differentiation. Development 138(10):1967–1975, doi:dev.056143 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koopman P, Munsterberg A, Capel B, Vivian N, Lovell-Badge R (1990) Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348(6300):450–452

    Article  CAS  PubMed  Google Scholar 

  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351(6322):117–121. doi:10.1038/351117a0

    Article  CAS  PubMed  Google Scholar 

  • Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103(8):2474–2479, doi:0510813103 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74(4):679–691, doi:0092-8674(93)90515-R [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N, Abe K, Ogura A, Wilhelm D, Koopman P, Nozaki M, Kanai Y, Shinkai Y, Tachibana M (2013) Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 341(6150):1106–1109, doi:341/6150/1106 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lee P, Schober J, Nordenstrom A, Hoebeke P, Houk C, Looijenga L, Manzoni G, Reiner W, Woodhouse C (2012) Review of recent outcome data of disorders of sex development (DSD): emphasis on surgical and sexual outcomes. J Pediatr Urol 8(6):611–615, doi:S1477-5131(12)00253-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lovell-Badge R, Robertson E (1990) XY female mice resulting from a heritable mutation in the primary testis-determining gene, Tdy. Development 109(3):635–646

    CAS  PubMed  Google Scholar 

  • Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77(4):481–490, doi:0092-8674(94)90211-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Magoffin DA (2005) Ovarian theca cell. Int J Biochem Cell Biol 37(7):1344–1349, doi:S1357-2725(05)00057-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Malki S, Berta P, Poulat F, Boizet-Bonhoure B (2005) Cytoplasmic retention of the sex-determining factor SOX9 via the microtubule network. Exp Cell Res 309(2):468–475, doi:S0014-4827(05)00326-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Martineau J, Nordqvist K, Tilmann C, Lovell-Badge R, Capel B (1997) Male-specific cell migration into the developing gonad. Curr Biol 7(12):958–968, doi:S0960-9822(06)00415-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Merchant H (1975) Rat gonadal and ovarioan organogenesis with and without germ cells. An ultrastructural study. Dev Biol 44(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Merchant-Larios H, Moreno-Mendoza N, Buehr M (1993) The role of the mesonephros in cell differentiation and morphogenesis of the mouse fetal testis. Int J Dev Biol 37(3):407–415

    CAS  PubMed  Google Scholar 

  • Morita Y, Manganaro TF, Tao XJ, Martimbeau S, Donahoe PK, Tilly JL (1999) Requirement for phosphatidylinositol-3′-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse. Endocrinology 140(2):941–949

    Article  CAS  PubMed  Google Scholar 

  • Palmer SJ, Burgoyne PS (1991) In situ analysis of fetal, prepuberal and adult XX – XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112(1):265–268

    CAS  PubMed  Google Scholar 

  • Pask AJ, Calatayud NE, Shaw G, Wood WM, Renfree MB (2010) Oestrogen blocks the nuclear entry of SOX9 in the developing gonad of a marsupial mammal. BMC Biol 8(1):113, doi:1741-7007-8-113 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulsson M (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27(1–2):93–127. doi:10.3109/10409239209082560

    CAS  PubMed  Google Scholar 

  • Payne AH, Hardy MP, Russell LD (1996) The Leydig cell. Cache River Press, Vienna

    Google Scholar 

  • Pelliniemi LJ, Frojdman K (2001) Structural and regulatory macromolecules in sex differentiation of gonads. J Exp Zool 290(5):523–528. doi:10.1002/jez.1096

    Article  CAS  PubMed  Google Scholar 

  • Perriton CL, Powles N, Chiang C, Maconochie MK, Cohn MJ (2002) Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev Biol 247(1):26–46. doi:10.1006/dbio.2002.0668

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Bishop CE (2005) Sox9 is sufficient for functional testis development producing fertile male mice in the absence of Sry. Hum Mol Genet 14(9):1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Kong LK, Poirier C, Truong C, Overbeek PA, Bishop CE (2004) Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet 13(12):1213–1218. doi:10.1093/hmg/ddh141

    Article  CAS  PubMed  Google Scholar 

  • Renfree MB, Ager EI, Shaw G, Pask AJ (2008) Genomic imprinting in marsupial placentation. Reproduction 136(5):523–531, doi:REP-08-0264 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Renfree MB, Suzuki S, Kaneko-Ishino T (2013) The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci 368(1609):20120151, doi:rstb.2012.0151 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson LL, Kleinman HK, Dym M (1995) Basement membrane gene expression by Sertoli and peritubular myoid cells in vitro in the rat. Biol Reprod 52(2):320–330

    Article  CAS  PubMed  Google Scholar 

  • Rossi P, Dolci S, Albanesi C, Grimaldi P, Geremia R (1993) Direct evidence that the mouse sex-determining gene Sry is expressed in the somatic cells of male fetal gonads and in the germ cell line in the adult testis. Mol Reprod Dev 34(4):369–373

    Article  CAS  PubMed  Google Scholar 

  • Schmahl J, Capel B (2003) Cell proliferation is necessary for the determination of male fate in the gonad. Dev Biol 258(2):264–276

    Article  CAS  PubMed  Google Scholar 

  • Schmahl J, Eicher EM, Washburn LL, Capel B (2000) Sry induces cell proliferation in the mouse gonad. Development 127(1):65–73

    CAS  PubMed  Google Scholar 

  • Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453(7197):930–934, doi:nature06944 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shinoda K, Lei H, Yoshii H, Nomura M, Nagano M, Shiba H, Sasaki H, Osawa Y, Ninomiya Y, Niwa O et al (1995) Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-F1 disrupted mice. Dev Dyn 204(1):22–29. doi:10.1002/aja.1002040104

    Article  CAS  PubMed  Google Scholar 

  • Siegel PM, Muller WJ (2010) Transcription factor regulatory networks in mammary epithelial development and tumorigenesis. Oncogene 29(19):2753–2759, doi:onc201043 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Stringer JM, Suzuki S, Pask AJ, Shaw G, Renfree MB (2012a) Promoter-specific expression and imprint status of marsupial IGF2. PLoS One 7(7):e41690. doi:10.1371/journal.pone.0041690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringer JM, Suzuki S, Pask AJ, Shaw G, Renfree MB (2012b) Selected imprinting of INS in the marsupial. Epigenetics Chromatin 5(1):14, doi:1756-8935-5-14 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svingen T, Koopman P (2007) Involvement of homeobox genes in mammalian sexual development. Sex Dev 1(1):12–23, doi:96235 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Timpl R (1993) Proteoglycans of basement membranes. Experientia 49(5):417–428

    Article  CAS  PubMed  Google Scholar 

  • Tung PS, Fritz IB (1993) Interactions of Sertoli cells with laminin are essential to maintain integrity of the cytoskeleton and barrier functions of cells in culture in the two-chambered assembly. J Cell Physiol 156(1):1–11. doi:10.1002/jcp.1041560102

    Article  CAS  PubMed  Google Scholar 

  • Tyndale-Biscoe CH, Renfree MB (1987) Reproductive physiology of marsupials, Monographs on marsupial biology. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Vidal VP, Chaboissier MC, de Rooij DG, Schedl A (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28(3):216–217

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm D, Martinson F, Bradford S, Wilson MJ, Combes AN, Beverdam A, Bowles J, Mizusaki H, Koopman P (2005) Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev Biol 287(1):111–124

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm D, Palmer S, Koopman P (2007) Sex determination and gonadal development in mammals. Physiol Rev 87(1):1–28. doi:10.1152/physrev.00009.2006, 87/1/1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yamada G (2005) Reproductive/urogenital organ development and molecular genetic cascades: glamorous developmental processes of bodies. J Biochem 137(6):665–669. doi:10.1093/jb/mvi085, 137/6/665 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yamada G, Suzuki K, Haraguchi R, Miyagawa S, Satoh Y, Kamimura M, Nakagata N, Kataoka H, Kuroiwa A, Chen Y (2006) Molecular genetic cascades for external genitalia formation: an emerging organogenesis program. Dev Dyn 235(7):1738–1752. doi:10.1002/dvdy.20807

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Pask .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pask, A. (2016). The Reproductive System. In: Wilhelm, D., Bernard, P. (eds) Non-coding RNA and the Reproductive System. Advances in Experimental Medicine and Biology, vol 886. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7417-8_1

Download citation

Publish with us

Policies and ethics