Skip to main content

Abstract

Bistability is a key system-level dynamical property to understand the basic mechanisms underpinning some cellular functions, like persistent memory, switch-like biochemical responses and irreversible cell differentiation. These processes are guaranteed by evolved molecular modules, involving genes, proteins and metabolites, which implement transitions between distinct operative conditions in response to exogenous and endogenous signals. In many cases, such a coordinated control action leads to a change in the dynamic behaviour of the cell, which persists even after the activating signal (e.g., the concentration of a certain molecular species) has returned to the initial concentration. A propaedeutical step to the construction of biomodels for this class of systems, is the analysis of the structure of the underlying biochemical reaction network; in particular, a necessary requirement is that the topology of this network is compatible with the assumed bistable Bistablebehaviour. Subsequently, one can face the question of whether the same performance is guaranteed even in the presence of endogenous and exogenous perturbations, i.e., whether the model is robustly bistable Bistablein the face of, e.g., parametric uncertainty (deriving from interindividual variability) or fluctuating environmental conditions (due to the intrinsic stochastic nature of cellular processes). The present chapter focusses on the presentation of methodological approaches for the characterization of bistability in biological systems; such methods are important as tools to assess the plausibility of mathematical models of biosystems that exhibit bimodal experimental behaviour, without recurring to large-scale computational simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The CRNT algorithm is implemented in the CRNT toolbox, available at http://www.che.eng.ohio-state.edu/~feinberg/crnt/.

  2. 2.

    Available at http://www.math.pitt.edu/~bard/xpp/xpp.html.

  3. 3.

    Available at http://www.matcont.ugent.be/matcont.html.

  4. 4.

    Implemented in bioSDP toolbox available at http://biosdp.sourceforge.net/.

References

  1. Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435(7039):228–232. doi:10.1038/nature03524

    Article  CAS  PubMed  Google Scholar 

  2. Ackers GK, Johnson AD, Shea MA (1982) Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci USA 79(4):1129–1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  CAS  PubMed  Google Scholar 

  4. Amato F, Cosentino C, Merola A (2007) On the region of attraction of nonlinear quadratic systems. Automatica 43(12):2119–2123

    Article  Google Scholar 

  5. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4(8):577–587. doi:10.1038/nrmicro1460

  6. Bagowski CP, Ferrell J Jr (2001) Bistability in the JNK cascade. Curr Biol 11(15):1176–1182

    Article  CAS  PubMed  Google Scholar 

  7. Bagowski CP, Besser J, Frey CR, Ferrell JE Jr (2003) The JNK cascade as a biochemical switch in mammalian cells: ultrasensitive and all-or-none responses. Curr Biol 13(4):315–320

    Article  CAS  PubMed  Google Scholar 

  8. Balas G, Chiang R, Packard A, Safonov M (2009) MATLAB robust control toolbox 3. Users guide. Natick, MA

    Google Scholar 

  9. Barabási A, Oltvai Z (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  PubMed  Google Scholar 

  10. Becskei A, Séraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20(10):2528–2535. doi:10.1093/emboj/20.10.2528

  11. Bentele M, Lavrik I, Ulrich M, Stösser S, Heermann D, Kalthoff H, Krammer P, Eils R (2004) Mathematical modeling reveals threshold mechanism in cd95-induced apoptosis. J Cell Biol 166(6):839–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283(5400):381–387

    Article  CAS  PubMed  Google Scholar 

  13. Bhartiya S, Chaudhary N, Venkatesh KV, Doyle FJ 3rd (2006) Multiple feedback loop design in the tryptophan regulatory network of Escherichia coli suggests a paradigm for robust regulation of processes in series. J R Soc Interface 3(8):383–391. doi:10.1098/rsif.2005.0103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bhat P (2008) Galactose regulon of yeast: from genetics to systems biology. Springer, New York

    Google Scholar 

  15. Blüthgen N, Herzel H (2003) How robust are switches in intracellular signaling cascades? J Theor Biol 225(3):293–300

    Article  PubMed  Google Scholar 

  16. Boyd S, El Ghaoul L, Feron E, Balakrishnan V (1987) Linear matrix inequalities in system and control theory, vol 15. Society for Industrial Mathematics

    Google Scholar 

  17. Chesi G (2004) On the estimation of the domain of attraction for uncertain polynomial systems via LMIs. In: Decision and control, 2004. CDC. 43rd IEEE conference on, IEEE, vol 1, pp 881–886

    Google Scholar 

  18. Chesi G (2011) Domain of attraction: analysis and control via SOS programming. Springer, New York

    Google Scholar 

  19. Cho K, Shin S, Kolch W, Wolkenhauer O (2003) Experimental design in systems biology, based on parameter sensitivity analysis using a monte carlo method: a case study for the tnf\(\alpha \)-mediated nf-k\(\beta \) b signal transduction pathway. Simulation 79(12):726–739

    Article  Google Scholar 

  20. Chou CS, Nie Q, Yi TM (2008) Modeling robustness tradeoffs in yeast cell polarization induced by spatial gradients. PLoS One 3(9):e3103. doi:10.1371/journal.pone.0003103

    Article  PubMed Central  PubMed  Google Scholar 

  21. Cosentino C, Bates D (2011) Feedback control in systems biology. CRC Press, Boca Raton

    Google Scholar 

  22. Cosentino C, Salerno L, Passanti A, Merola A, Bates DG, Amato F (2012) Structural bistability of the gal regulatory network and characterization of its domains of attraction. J Comput Biol 19(2):148–162. doi:10.1089/cmb.2011.0251

    Article  CAS  PubMed  Google Scholar 

  23. Delbrück M (1948) Biochemical mutants of bacterial viruses. J Bacteriol 56(1):1–16

    PubMed Central  Google Scholar 

  24. Doyle J, Csete M (2005) Motifs, control, and stability. PLoS Biol 3(11):e392. doi:10.1371/journal.pbio.0030392

    Article  PubMed Central  PubMed  Google Scholar 

  25. Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61(3):564–572. doi:10.1111/j.1365-2958.2006.05249.x

    Article  CAS  PubMed  Google Scholar 

  26. Eissing T, Allgöwer F, Bullinger E (2005) Robustness properties of apoptosis models with respect to parameter variations and intrinsic noise. Syst Biol (Stevenage) 152(4):221–228

    Article  CAS  Google Scholar 

  27. Feinberg M (1972) Complex balancing in general kinetic systems. Arch Ration Mech Anal 49(3):187–194

    Article  Google Scholar 

  28. Feinberg M (1987) Chemical reaction network structure and the stability of complex isothermal reactors-i. The deficiency zero and deficiency one theorems. Chem Eng Sci 42(10):2229–2268

    Article  CAS  Google Scholar 

  29. Feinberg M (1988) Chemical reaction network structure and the stability of complex isothermal reactors-ii. Multiple steady states for networks of deficiency one. Chem Eng Sci 43(1):1–25

    Article  CAS  Google Scholar 

  30. Feng XJ, Hooshangi S, Chen D, Li G, Weiss R, Rabitz H (2004) Optimizing genetic circuits by global sensitivity analysis. Biophys J 87(4):2195–2202. doi:10.1529/biophysj.104.044131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ferrell J Jr, Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in xenopus oocytes. Science 280(5365):895–898

    Article  CAS  PubMed  Google Scholar 

  32. Ferrell JE Jr (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–148

    Article  CAS  PubMed  Google Scholar 

  33. Freeman M (2000) Feedback control of intercellular signalling in development. Nature 408(6810):313–319. doi:10.1038/35042500

    Article  CAS  PubMed  Google Scholar 

  34. Gardner T, Cantor C, Collins J (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  35. Genesio R, Tartaglia M, Vicino A (1985) On the estimation of asymptotic stability regions: state of the art and new proposals. IEEE Trans Autom Control 30(8):747–755

    Article  Google Scholar 

  36. Gunawardena J (2010) Models in systems biology: the parameter problem and the meanings of robustness. In: Elements of computational systems biology. Wiley, New York, pp 19–47

    Google Scholar 

  37. Hasenauer J, Rumschinski P, Waldherr S, Borchers S, Allgöwer F, Findeisen R (2010) Guaranteed steady state bounds for uncertain (bio-) chemical processes using infeasibility certificates. J Process Control 20(9):1076–1083

    Article  CAS  Google Scholar 

  38. Horn F (1972) Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch Ration Mech Anal 49(3):172–186

    Article  Google Scholar 

  39. Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94(12):128, 701

    Google Scholar 

  40. Ingalls BP, Sauro HM (2003) Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J Theor Biol 222(1):23–36

    Article  PubMed  Google Scholar 

  41. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  42. Jin Y, Sendhoff B (2008) Evolving in silico bistable and oscillatory dynamics for gene regulatory network motifs. In: Evolutionary computation, 2008. CEC, 2008. IEEE World Congress on computational intelligence. IEEE Congress on, IEEE, pp 386–391

    Google Scholar 

  43. Khalil H, Grizzle J (1996) Nonlinear systems, vol 3. Prentice Hall, Englewood Cliffs

    Google Scholar 

  44. Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837. doi:10.1038/nrg1471

    Article  CAS  PubMed  Google Scholar 

  45. Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137. doi:10.1038/msb4100179

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kurata H, El-Samad H, Iwasaki R, Ohtake H, Doyle JC, Grigorova I, Gross CA, Khammash M (2006) Module-based analysis of robustness tradeoffs in the heat shock response system. PLoS Comput Biol 2(7):e59. doi:10.1371/journal.pcbi.0020059

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kuznetsov I (1998) Elements of applied bifurcation theory, vol 112. Springer, New York

    Google Scholar 

  48. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR, Singh H (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126(4):755–766. doi:10.1016/j.cell.2006.06.052

    Article  CAS  PubMed  Google Scholar 

  49. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298(5594):799–804. doi:10.1126/science.1075090

  50. Ma L, Iglesias PA (2002) Quantifying robustness of biochemical network models. BMC Bioinformat 3:38

    Article  Google Scholar 

  51. Maamar H, Dubnau D (2005) Bistability in the bacillus subtilis k-state (competence) system requires a positive feedback loop. Mol Microbiol 56(3):615–624. doi:10.1111/j.1365-2958.2005.04592.x

    Article  CAS  PubMed  Google Scholar 

  52. Müller-Hill B (1998) Some repressors of bacterial transcription. Curr Opin Microbiol 1(2):145–151

    Article  PubMed  Google Scholar 

  53. Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Article  CAS  PubMed  Google Scholar 

  54. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausile model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  55. Newman M, Barabasi A, Watts D (2011) The structure and dynamics of networks. Princeton University Press, Princeton

    Google Scholar 

  56. Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA 43(7):553–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Paliwal S, Iglesias PA, Campbell K, Hilioti Z, Groisman A, Levchenko A (2007) MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446(7131):46–51. doi:10.1038/nature05561

    Article  CAS  PubMed  Google Scholar 

  58. Ruhela A, Verma M, Edwards JS, Bhat PJ, Bhartiya S, Venkatesh KV (2004) Autoregulation of regulatory proteins is key for dynamic operation of gal switch in saccharomyces cerevisiae. FEBS Lett 576(1–2):119–126. doi:10.1016/j.febslet.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  59. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–68. doi:10.1038/ng881

    Article  CAS  PubMed  Google Scholar 

  60. Smits WK, Kuipers OP, Veening JW (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4(4):259–271. doi:10.1038/nrmicro1381

    Article  CAS  PubMed  Google Scholar 

  61. Stamatakis M, Zygourakis K (2011) Deterministic and stochastic population-level simulations of an artificial lac operon genetic network. BMC Bioinformat 12:301. doi:10.1186/1471-2105-12-301

    Article  Google Scholar 

  62. Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of cellular functions. Cell 118(6):675–685. doi:10.1016/j.cell.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  63. Strogatz S (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Westview Press, Perseus Books, (Cambridge

    Google Scholar 

  64. Thomas R (1978) Logical analysis of systems comprising feedback loops. J Theor Biol 73(4):631–656

    Article  CAS  PubMed  Google Scholar 

  65. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Article  CAS  PubMed  Google Scholar 

  66. Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38(1):49–95

    Article  Google Scholar 

  67. Vannelli A, Vidyasagar M (1985) Maximal lyapunov functions and domains of attraction for autonomous nonlinear systems. Automatica 21(1):69–80

    Article  Google Scholar 

  68. Veening JW, Hamoen LW, Kuipers OP (2005) Phosphatases modulate the bistable sporulation gene expression pattern in bacillus subtilis. Mol Microbiol 56(6):1481–1494. doi:10.1111/j.1365-2958.2005.04659.x

    Article  CAS  PubMed  Google Scholar 

  69. Waddington C et al (1957) The strategy of the genes. A discussion of some aspects of theoretical biology. with an appendix by h. kacser. The strategy of the genes A discussion of some aspects of theoretical biology With an appendix by H. Kacser pp ix+-262

    Google Scholar 

  70. Waldherr S, Findeisen R, Allgöwer F (2008) Global sensitivity analysis of biochemical reaction networks via semidefinite programming. In: IFAC proceedings volumes (IFAP-papers online), 17th World Congress, international federation of automatic control, IFAC, vol 17

    Google Scholar 

  71. Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos, vol 2. Springer, New York

    Google Scholar 

  72. Wykoff DD, Rizvi AH, Raser JM, Margolin B, O’Shea EK (2007) Positive feedback regulates switching of phosphate transporters in s. cerevisiae. Mol Cell 27(6):1005–1013. doi:10.1016/j.molcel.2007.07.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Xiong W, Ferrell JE Jr (2003) A positive-feedback-based bistable ’memory module’ that governs a cell fate decision. Nature 426(6965):460–465. doi:10.1038/nature02089

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cosentino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Salerno, L., Cosentino, C., Merola, A., Bates, D.G., Amato, F. (2014). Robustness Model Validation of Bistability in Biomolecular Systems. In: Kulkarni, V., Stan, GB., Raman, K. (eds) A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9047-5_6

Download citation

Publish with us

Policies and ethics