Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 70))

Abstract

Epigenetics is “the branch of biology which studies the causal interactions between genes and their products which bring the phenotype into being” as defined by Conrad Waddington in 1942 in a discussion of the mechanisms of cell differentiation. More than seven decades later we know that these mechanisms include histone tail post-translational modifications, DNA methylation, ATP-dependent chromatin remodeling, and non-coding RNA pathways. Epigenetic modifications are powerful drugs targets, and combined targeting of multiple pathways is expected to significantly advance cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SAH:

S-adenosylhomocysteine

SAHA:

Suberoylanilidehydroxamic acid

KMT/PRMT:

Lysine/arginine methyltransferase

KDM/PRDM:

Lysine/arginine demethylase

ES:

Embryonic stem

HDAC:

Histone deacetylase

CpG:

Phosphodiester-bonded cytosine–guanine dinucleotide

MECP:

Methyl-CpG-binding domain proteins

DNMT:

DNA methyltransferase

RAR:

Retinoic acid receptor

RA:

retinoic acid

Hox:

Homeobox

ChIP:

Chromatin immunoprecipitation

RXR:

Retinoid X receptor

RARE:

Retinoic acid responsive DNA element

PRC:

Polycomb repressive complex

5hmC:

5-hydroxymethylcytosine

5-Aza:

5-Aza-2′-deoxycytidine

DZNep:

3-Deazaneplanocin A

HSCs:

Hematopoietic stem cells

TRAIL:

TNF-related apoptosis-inducing ligand

TDG:

thymine DNA glycosylase

PP:

proximal promoter

KDM1:

LSD1/2

KDM4A:

JMJD2A

KDM5A:

Jarid1A/B/C/D

KDM6:

JMJD3/UTX/(UTY)

KAT3A/B:

CBP/p300

KAT6A:

MOZ

KAT6B:

MORF

MT2A:

MLL1

KMT2B/C:

MLL2/3

References

  1. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734

    CAS  PubMed  Google Scholar 

  2. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, Schlegl J, Abraham Y, Becher I, Bergamini G, Boesche M, Delling M, Dumpelfeld B, Eberhard D, Huthmacher C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G, Kruse U, Neubauer G, Ramsden NG, Drewes G (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29:255–265

    CAS  PubMed  Google Scholar 

  4. Béguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M, Shen H, Yang SN, Wang L, Ezponda T, Martinez-Garcia E, Zhang H, Zheng Y, Verma SK, McCabe MT, Ott HM, Van Aller GS, Kruger RG, Liu Y, McHugh CF, Scott DW, Chung YR, Kelleher N, Shaknovich R, Creasy CL, Gascoyne RD, Wong KK, Cerchietti L, Levine RL, Abdel-Wahab O, Licht JD, Elemento O, Melnick AM (2013) EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23:677–692

    PubMed Central  PubMed  Google Scholar 

  5. Benoit YD, Laursen KB, Witherspoon MS, Lipkin SM, Gudas LJ (2013) Inhibition of PRC2 histone methyltransferase activity increases TRAIL-mediated apoptosis sensitivity in human colon cancer cells. J Cell Physiol 228:764–772

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Benoit YD, Witherspoon MS, Laursen KB, Guezguez A, Beauséjour M, Beaulieu JF, Lipkin SM, Gudas LJ (2013) Pharmacological inhibition of polycomb repressive complex-2 activity induces apoptosis in human colon cancer stem cells. Exp Cell Res 319:1463

    Google Scholar 

  7. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    CAS  PubMed  Google Scholar 

  8. Bosch A, Bertran SP, Lu Y, Garcia A, Jones AM, Dawson MI, Farias EF (2012) Reversal by RARalpha agonist Am 580 of c-Myc-induced imbalance in RARalpha/RARgamma expression during MMTV-Myc tumorigenesis. Breast Cancer Res 14:R121

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, Ahmadi R, Lohr J, Dictus C, Gdynia G, Combs SE, Goidts V, Helmke BM, Eckstein V, Roth W, Beckhove P, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende C (2010) Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 16:2715–2728

    CAS  PubMed  Google Scholar 

  10. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043

    CAS  PubMed  Google Scholar 

  11. Chiba T, Suzuki E, Negishi M, Saraya A, Miyagi S, Konuma T, Tanaka S, Tada M, Kanai F, Imazeki F, Iwama A, Yokosuka O (2012) 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int J Cancer 130:2557–2567

    CAS  PubMed  Google Scholar 

  12. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461:415–418

    CAS  PubMed  Google Scholar 

  13. Cimino G, Lo-Coco F, Fenu S, Travaglini L, Finolezzi E, Mancini M, Nanni M, Careddu A, Fazi F, Padula F, Fiorini R, Spiriti MA, Petti MC, Venditti A, Amadori S, Mandelli F, Pelicci PG, Nervi C (2006) Sequential valproic acid/all-trans retinoic acid treatment reprograms differentiation in refractory and high-risk acute myeloid leukemia. Cancer Res 66:8903–8911

    CAS  PubMed  Google Scholar 

  14. Cohen I, Poręba E, Kamieniarz K, Schneider R (2011) Histone modifiers in cancer: friends or foes? Genes Cancer 2:631–647

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Constância M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G, Dean W, Ferguson-Smith A, Sibley CP, Reik W, Fowden A (2005) Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci USA 102:19219–19224

    PubMed Central  PubMed  Google Scholar 

  16. Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs AL, Siegrist F, Steinacher R, Jiricny J, Bird A, Schär P (2011) Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470:419–423

    PubMed  Google Scholar 

  17. Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, Le Coz M, Devarajan K, Wessels A, Soprano D, Abramowitz LK, Bartolomei MS, Rambow F, Bassi MR, Bruno T, Fanciulli M, Renner C, Klein-Szanto AJ, Matsumoto Y, Kobi D, Davidson I, Alberti C, Larue L, Bellacosa A (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146:67–79

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Coskun V, Tsoa R, Sun YE (2012) Epigenetic regulation of stem cells differentiating along the neural lineage. Curr Opin Neurobiol 22:762–767

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Crea F, Hurt EM, Mathews LA, Cabarcas SM, Sun L, Marquez VE, Danesi R, Farrar WL (2011) Pharmacologic disruption of polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 10:40

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3 K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107:21931–21936

    CAS  PubMed Central  PubMed  Google Scholar 

  21. David KA, Mongan NP, Smith C, Gudas LJ, Nanus DM (2010) Phase I trial of ATRA-IV and depakote in patients with advanced solid tumor malignancies. Cancer Biol Ther 9:678–684

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Dawson MA, Kouzarides T, Huntly BJ (2012) Targeting epigenetic readers in cancer. N Engl J Med 367:647–657

    CAS  PubMed  Google Scholar 

  23. Feng D, Cao Z, Li C, Zhang L, Zhou Y, Ma J, Liu R, Zhou H, Zhao W, Wei H, Ling B (2012) Combination of valproic acid and ATRA restores RARβ2 expression and induces differentiation in cervical cancer through the PI3K/Akt pathway. Curr Mol Med 12:342–354

    CAS  PubMed  Google Scholar 

  24. Fiskus W, Buckley K, Rao R, Mandawat A, Yang Y, Joshi R, Wang Y, Balusu R, Chen J, Koul S, Joshi A, Upadhyay S, Atadja P, Bhalla KN (2009) Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biol Ther 8:939–950

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20:2536–2544

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Gan CP, Hamid S, Hor SY, Zain RB, Ismail SM, Wan Mustafa WM, Teo SH, Saunders N, Cheong SC (2012) Valproic acid: growth inhibition of head and neck cancer by induction of terminal differentiation and senescence. Head Neck 34:344–353

    PubMed  Google Scholar 

  27. Gillespie RF, Gudas LJ (2007) Retinoic acid receptor isotype specificity in F9 teratocarcinoma stem cells results from the differential recruitment of coregulators to retinoic response elements. J Biol Chem 282:33421–33434

    CAS  PubMed  Google Scholar 

  28. Gillespie RF, Gudas LJ (2007) Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. J Mol Biol 372:298–316

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Glasow A, Barrett A, Petrie K, Gupta R, Boix-Chornet M, Zhou DC, Grimwade D, Gallagher R, von Lindern M, Waxman S, Enver T, Hildebrandt G, Zelent A (2008) DNA methylation-independent loss of RARA gene expression in acute myeloid leukemia. Blood 111:2374–2377

    CAS  PubMed  Google Scholar 

  30. Griffith JS, Mahler HR (1969) DNA ticketing theory of memory. Nature 223:580–582

    CAS  PubMed  Google Scholar 

  31. Guillemette B, Drogaris P, Lin HH, Armstrong H, Hiragami-Hamada K, Imhof A, Bonneil E, Thibault P, Verreault A, Festenstein RJ (2011) H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7:e1001354

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Guo JU, Su Y, Zhong C, Ming GL, Song H (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Guo Y, Pino-Lagos K, Ahonen CA, Bennett KA, Wang J, Napoli JL, Blomhoff R, Sockanathan S, Chandraratna RA, Dmitrovsky E, Turk MJ, Noelle RJ (2012) A retinoic acid-rich tumor microenvironment provides clonal survival cues for tumor-specific CD8+ T cells. Cancer Res 72:5230–5239

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    CAS  PubMed  Google Scholar 

  36. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128:1077–1088

    CAS  PubMed  Google Scholar 

  38. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  39. Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E, Dontje B, de Haan G (2006) The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107:2170–2179

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Kashyap V, Gudas LJ (2010) Epigenetic regulatory mechanisms distinguish retinoic acid-mediated transcriptional responses in stem cells and fibroblasts. J Biol Chem 285:14534–14548

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Kashyap V, Gudas LJ, Brenet F, Funk P, Viale A, Scandura JM (2011) Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem 286:3250–3260

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Kashyap V, Laursen KB, Brenet F, Viale AJ, Scandura JM, Gudas LJ (2013) RARγ is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells. J Cell Sci 126:999–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kato Y, Salumbides BC, Wang XF, Qian DZ, Williams S, Wei Y, Sanni TB, Atadja P, Pili R (2007) Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma. Mol Cancer Ther 6:70–81

    CAS  PubMed  Google Scholar 

  44. Kim JY, Kim KB, Son HJ, Chae YC, Oh ST, Kim DW, Pak JH, Seo SB (2012) H3K27 methylation and H3S28 phosphorylation-dependent transcriptional regulation by INHAT subunit SET/TAF-Iβ. FEBS Lett 586:3159–3165

    CAS  PubMed  Google Scholar 

  45. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM, Kuntz KW (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896

    CAS  PubMed  Google Scholar 

  46. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  47. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    PubMed  Google Scholar 

  49. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes Dev 16:2893–2905

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Langston AW, Thompson JR, Gudas LJ (1997) Retinoic acid-responsive enhancers located 3’ of the Hox A and Hox B homeobox gene clusters. Functional analysis. J Biol Chem 272:2167–2175

    CAS  PubMed  Google Scholar 

  51. Laursen KB, Mongan NP, Zhuang Y, Ng MM, Benoit YD, Gudas LJ (2013) Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene. Nucleic Acids Res 41:6430–6443

    Google Scholar 

  52. Laursen KB, Wong PM, Gudas LJ (2012) Epigenetic regulation by RARalpha maintains ligand-independent transcriptional activity. Nucleic Acids Res 40:102–115

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Di Croce L, Shiekhattar R (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–450

    CAS  PubMed  Google Scholar 

  54. Leiva M, Moretti S, Soilihi H, Pallavicini I, Peres L, Mercurio C, Dal Zuffo R, Minucci S, de Thé H (2012) Valproic acid induces differentiation and transient tumor regression, but spares leukemia-initiating activity in mouse models of APL. Leukemia 26:1630–1637

    Google Scholar 

  55. Lübbert M, Rüter BH, Claus R, Schmoor C, Schmid M, Germing U, Kuendgen A, Rethwisch V, Ganser A, Platzbecker U, Galm O, Brugger W, Heil G, Hackanson B, Deschler B, Döhner K, Hagemeijer A, Wijermans PW, Döhner H (2012) A multicenter phase II trial of decitabine as first-line treatment for older patients with acute myeloid leukemia judged unfit for induction chemotherapy. Haematologica 97:393–401

    PubMed Central  PubMed  Google Scholar 

  56. Mark M, Ghyselinck NB, Chambon P (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46:451–480

    CAS  PubMed  Google Scholar 

  57. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A, Diaz E, LaFrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112

    CAS  PubMed  Google Scholar 

  58. Mills AA (2010) Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer 10:669–682

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17:1823–1828

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Mongan NP, Gudas LJ (2005) Valproic acid, in combination with all-trans retinoic acid and 5-aza-2′-deoxycytidine, restores expression of silenced RARbeta2 in breast cancer cells. Mol Cancer Ther 4:477–486

    CAS  PubMed  Google Scholar 

  61. Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279:52353–52360

    CAS  PubMed  Google Scholar 

  62. Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, Xie H, Orkin SH, Armstrong SA (2012) Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci USA 109:5028–5033

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1:299–312

    CAS  PubMed  Google Scholar 

  64. Pasini D, Hansen KH, Christensen J, Agger K, Cloos PA, Helin K (2008) Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and polycomb-repressive complex 2. Genes Dev 22:1345–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON, Helin K (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38:4958–4969

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Phillips DM (1963) The presence of acetyl groups of histones. Biochem J 87:258–263

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Pili R, Salumbides B, Zhao M, Altiok S, Qian D, Zwiebel J, Carducci MA, Rudek MA (2012) Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer 106:77–84

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Prickett AR, Oakey RJ (2012) A survey of tissue-specific genomic imprinting in mammals. Mol Genet Genomics 287:621–630

    CAS  PubMed  Google Scholar 

  69. Qi H, Ratnam M (2006) Synergistic induction of folate receptor beta by all-trans retinoic acid and histone deacetylase inhibitors in acute myelogenous leukemia cells: mechanism and utility in enhancing selective growth inhibition by antifolates. Cancer Res 66:5875–5882

    CAS  PubMed  Google Scholar 

  70. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    CAS  PubMed  Google Scholar 

  71. Rai K, Sarkar S, Broadbent TJ, Voas M, Grossmann KF, Nadauld LD, Dehghanizadeh S, Hagos FT, Li Y, Toth RK, Chidester S, Bahr TM, Johnson WE, Sklow B, Burt R, Cairns BR, Jones DA (2010) DNA demethylase activity maintains intestinal cells in an undifferentiated state following loss of APC. Cell 142:930–942

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Raman JD, Mongan NP, Tickoo SK, Boorjian SA, Scherr DS, Gudas LJ (2005) Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res 11:8570–8576

    CAS  PubMed  Google Scholar 

  73. Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25

    CAS  PubMed  Google Scholar 

  74. Riggs AD, Matienssen RA, Russo VEA (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  75. Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339

    PubMed  Google Scholar 

  76. Sasai N, Defossez PA (2009) Many paths to one goal? The proteins that recognize methylated DNA in eukaryotes. Int J Dev Biol 53:323–334

    CAS  PubMed  Google Scholar 

  77. Savickiene J, Treigyte G, Jazdauskaite A, Borutinskaite VV, Navakauskiene R (2012) DNA methyltransferase inhibitor RG108 and histone deacetylase inhibitors cooperate to enhance NB4 cell differentiation and E-cadherin re-expression by chromatin remodelling. Cell Biol Int 36:1067–1078

    CAS  PubMed  Google Scholar 

  78. Schenk T, Chen WC, Göllner S, Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, Mills K, Casero RA, Marton L, Woster P, Minden MD, Dugas M, Wang JC, Dick JE, Müller-Tidow C, Petrie K, Zelent A (2012) Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med 18:605–611

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6:73–77

    CAS  PubMed  Google Scholar 

  80. Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher AG, Pombo A (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9:1428–1435

    CAS  PubMed  Google Scholar 

  81. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M, Suzuki Y, Sugano S, Nakaseko C, Yokote K, Koseki H, Iwama A (2012) Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 120:1107–1117

    CAS  PubMed  Google Scholar 

  84. Tang XH, Albert M, Scognamiglio T, Gudas LJ (2009) A DNA methyltransferase inhibitor and all-trans retinoic acid reduce oral cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide. Cancer Prev Res (Phila) 2:1100–1110

    CAS  Google Scholar 

  85. Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364

    CAS  PubMed  Google Scholar 

  86. Tavares TS, Nanus D, Yang XJ, Gudas LJ (2008) Gene microarray analysis of human renal cell carcinoma: the effects of HDAC inhibition and retinoid treatment. Cancer Biol Ther 7:1607–1618

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Tie F, Banerjee R, Conrad PA, Scacheri PC, Harte PJ (2012) Histone demethylase UTX and chromatin remodeler BRM bind directly to CBP and modulate acetylation of histone H3 lysine 27. Mol Cell Biol 32:2323–2334

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Tollervey J, Lunyak VV (2012) Epigenetics: Judge, jury and executioner of stem cell fate. Epigenetics 7:823–840

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Touma SE, Goldberg JS, Moench P, Guo X, Tickoo SK, Gudas LJ, Nanus DM (2005) Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin Cancer Res 11:3558–3566

    CAS  PubMed  Google Scholar 

  90. Trus MR, Yang L, Suarez Saiz F, Bordeleau L, Jurisica I, Minden MD (2005) The histone deacetylase inhibitor valproic acid alters sensitivity towards all trans retinoic acid in acute myeloblastic leukemia cells. Leukemia 19:1161–1168

    CAS  PubMed  Google Scholar 

  91. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    CAS  PubMed  Google Scholar 

  92. Um S, Harbers M, Benecke A, Pierrat B, Losson R, Chambon P (1998) Retinoic acid receptors interact physically and functionally with the T: G mismatch-specific thymine-DNA glycosylase. J Biol Chem 273:20728–20736

    CAS  PubMed  Google Scholar 

  93. Verdone L, Agricola E, Caserta M, Di Mauro E (2006) Histone acetylation in gene regulation. Brief Funct Genomic Proteomic 5:209–221

    CAS  PubMed  Google Scholar 

  94. Voigt P, Leroy G, Drury WJ, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151:181–193

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Voss AK, Collin C, Dixon MP, Thomas T (2009) Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev Cell 17:674–686

    CAS  PubMed  Google Scholar 

  96. Waddington CH (1957) The strategy of genes. Allen & Unwin, London

    Google Scholar 

  97. Waddington CH (1968) Towards a Theoretical Biology. Edinburgh University Press, Edinburgh, Scotland

    Google Scholar 

  98. Wang XF, Qian DZ, Ren M, Kato Y, Wei Y, Zhang L, Fansler Z, Clark D, Nakanishi O, Pili R (2005) Epigenetic modulation of retinoic acid receptor beta2 by the histone deacetylase inhibitor MS-275 in human renal cell carcinoma. Clin Cancer Res 11:3535–3542

    CAS  PubMed  Google Scholar 

  99. Yang QJ, Zhou LY, Mu YQ, Zhou QX, Luo JY, Cheng L, Deng ZL, He TC, Haydon RC, He BC (2012) All-trans retinoic acid inhibits tumor growth of human osteosarcoma by activating Smad signaling-induced osteogenic differentiation. Int J Oncol 41:153–160

    CAS  PubMed  Google Scholar 

  100. Yang XJ (2005) Multisite protein modification and intramolecular signaling. Oncogene 24:1653–1662

    CAS  PubMed  Google Scholar 

  101. Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, Li X, Xu M, Zhang Z, Niu T, Han Z, Chai J, Zhou XJ, Gao S, Zhu B (2012) Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. Science 337:971–975

    CAS  PubMed  Google Scholar 

  102. Zhang L, Ren X, Alt E, Bai X, Huang S, Xu Z, Lynch PM, Moyer MP, Wen XF, Wu X (2010) Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature 464:1058–1061

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Zhou J, Bi C, Cheong LL, Mahara S, Liu SC, Tay KG, Koh TL, Yu Q, Chng WJ (2011) The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 118:2830–2839

    PubMed  Google Scholar 

  104. Zhou W, Chen H, Zhang L (2009) The PcG protein hPc2 interacts with the N-terminus of histone demethylase JARID1B and acts as a transcriptional co-repressor. BMB Rep 42:154–159

    CAS  PubMed  Google Scholar 

  105. Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Weill Cornell and the NIH (NCI R01-CA043796 to LJG, NIDCR R01-DE010389 to LJG), and (NIAAA F32-AA021045 to AU) for support for this chapter. We also thank members of the Gudas lab for suggestions and comments, and in particular, Dr. Yannick Benoit for critically reading this chapter. We thank Tamara Weissman for editing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alison Urvalek or Kristian Bruun Laursen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Urvalek, A., Laursen, K.B., Gudas, L.J. (2014). The Roles of Retinoic Acid and Retinoic Acid Receptors in Inducing Epigenetic Changes. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoic Acid Receptors I: Structure, Activation, and Function at the Molecular Level. Subcellular Biochemistry, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9050-5_7

Download citation

Publish with us

Policies and ethics