Skip to main content

Abstract

Recent evidence suggests that dysregulated translation and its control significantly contribute to the etiology and pathogenesis of the head and neck cancers, specifically to that of squamous cell carcinoma (HNSCC). eIF4E is one of the most studied components of the translation machinery implicated in the development and progression of HNSCC. It appears that dysregulation of eIF4E levels and activity, namely by the PI3K/AKT/mTOR pathway, plays an important role in the etiology and pathogenesis of HNSCC and correlates with clinical outcomes. In this chapter, we will discuss the role of eIF4E and some other translation factors as they relate to the biology and treatment of HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, Zammit D, Marcus V, Metrakos P, Voyer LA, Gandin V, Liu Y, Topisirovic I, Sonenberg N (2012) eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res 72:6468–6476

    Article  PubMed  CAS  Google Scholar 

  • Amornphimoltham P, Patel V, Sodhi A, Nikitakis N, Sauk J, Sausville E, Molinolo A, Gutkind J (2005) Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck. Cancer Res 65:9953–9961

    Article  PubMed  CAS  Google Scholar 

  • Argiris A, Karamouzis MV, Raben D, Ferris RL (2008) Head and neck cancer. The Lancet 371:1695–1709

    Article  CAS  Google Scholar 

  • Artman T, Schilling D, Gnann J, Molls M, Multhoff G, Bayer C (2010) Irradiation-induced regulation of plasminogen activator inhibitor type-1 and vascular endothelial growth factor in six human squamous cell carcinoma lines of the head and neck. Int J Radiat Oncol Biol Phys 76:574–582

    Article  PubMed  CAS  Google Scholar 

  • Balfour A, Rhys Evans PH, Patel SG (2009) Head and neck malignancy: an overview. In: Montgomery PQ, Rhys Evans PH, Gullane PJ (eds) Principles and practice of head and neck surgery and oncology, 2nd edn. Informa Healthcare, New York, pp 1–13

    Google Scholar 

  • Beier UH, Weise JB, Laudien M, Sauerwein H, Görögh T (2007) Overexpression of Pim-1 in head and neck squamous cell carcinomas. Int J Oncol 30:1381–1387

    PubMed  CAS  Google Scholar 

  • Bozec A, Peyrade F, Milano G (2013) Molecular targeted therapies in the management of head and neck squamous cell carcinoma: recent developments and perspectives. Anticancer Agents Med Chem 13:389–402

    PubMed  CAS  Google Scholar 

  • Cassell A, Freilino ML, Lee J, Barr S, Wang L, Panahandeh MC, Thomas SM, Grandis JR (2012) Targeting TORC1/2 enhances sensitivity to EGFR inhibitors in head and neck cancer preclinical models. Neoplasia 14:1005–1014

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chakravarti N, Kadara H, Yoon DJ, Shay JW, Myers JN, Lotan D, Sonenberg N, Lotan R (2010) Differential inhibition of protein translation machinery by curcumin in normal, immortalized, and malignant oral epithelial cells. Cancer Prev Res (Phila) 3:331–338

    Article  CAS  Google Scholar 

  • Chiang WF, Yen CY, Lin CN, Liaw GA, Chiu CT, Hsia YJ, Liu SY (2006) Up-regulation of a serine-threonine kinase proto-oncogene Pim-1 in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 35:740–745

    Article  PubMed  Google Scholar 

  • Clark C, Shah S, Herman-Ferdinandez L, Ekshyyan O, Abreo F, Rong X, McLarty J, Lurie A, ­Milligan EJ, Nathan CO (2010) Teasing out the best molecular marker in the AKT/mTOR pathway in head and neck squamous cell cancer patients. Laryngoscope 120:1159–1165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen EE, Lingen MW, Vokes EE (2004) The expanding role of systemic therapy in head and neck cancer. J Clin Oncol 22:1743–1752

    Article  PubMed  Google Scholar 

  • Culjkovic B, Topisirovic I, Borden KL (2007) Controlling gene expression through RNA regulons: the role of the eukaryotic translation initiation factor eIF4E. Cell Cycle 6:65–69

    Article  PubMed  CAS  Google Scholar 

  • Czerninski R, Amornphimoltham P, Patel V, Molinolo A, Gutkind J (2009) Targeting mammalian target of rapamycin by rapamycin prevents tumor progression in an oral-specific chemical carcinogenesis model. Cancer Prev Res 2:27–36

    Article  CAS  Google Scholar 

  • De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23:3189–3199

    Article  PubMed  CAS  Google Scholar 

  • De Benedetti A, Rhoads RE (1990) Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology. Proc Natl Acad Sci U S A 87:8212–8216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16:S17–S27

    Article  PubMed  CAS  Google Scholar 

  • DeFatta RJ, Nathan CO, De Benedetti A (2000) Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line. Laryngoscope 110:928–933

    Article  PubMed  CAS  Google Scholar 

  • Ekshyyan O, Rong Y, Rong X, Pattani K, Abreo F, Caldito G, Chang J, Ampil F, Glass J, Nathan CO (2009) Comparison of radiosensitizing effects of the mammalian target of rapamycin inhibitor CCI-779 to cisplatin in experimental models of head and neck squamous cell carcinoma. Mol Cancer Ther 8:2255–2265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ekshyyan O, Mills GM, Lian T, Amirghahari N, Rong X, Lowery-Nordberg M, Abreo F, Veillon DM, Caldito G, Speicher L, Glass J, Nathan CO (2010) Pharmacodynamic evaluation of temsirolimus in patients with newly diagnosed advanced-stage head and neck squamous cell carcinoma. Head Neck 32:1619–1628

    Article  PubMed  Google Scholar 

  • Erlich RB, Kherrouche Z, Rickwood D, Endo-Munoz L, Cameron S, Dahler A, Hazar-Rethinam M, de Long LM, Wooley K, Guminski A, Saunders NA (2012) Preclinical evaluation of dual PI3K-mTOR inhibitors and histone deacetylase inhibitors in head and neck squamous cell carcinoma. Br J Cancer 106:107–115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Franklin S, Pho T, Abreo FW, Nassar R, De Benedetti A, Stucker FJ, Nathan CO (1999) Detection of the proto-oncogene eIF4E in larynx and hypopharynx cancers. Arch Otolaryngol Head Neck Surg 125:177–182

    Article  PubMed  CAS  Google Scholar 

  • Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H, Hale TJ, Soengas MS, Kaufman RJ, Wang CY (2006) Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem 281:31440–31447

    Article  PubMed  CAS  Google Scholar 

  • Fury MG, Drobnjak M, Sima CS, Asher M, Shah J, Lee N, Carlson D, Wendel HG, Pfister DG (2011) Tissue microarray evidence of association between p16 and phosphorylated eIF4E in tonsillar squamous cell carcinoma. Head Neck 33:1340–1345

    Article  PubMed  Google Scholar 

  • Fury MG, Sherman E, Ho AL, Xiao H, Tsai F, Nwankwo O, Sima C, Heguy A, Katabi N, Haque S, Pfister DG (2013) A phase 1 study of everolimus plus docetaxel plus cisplatin as induction chemotherapy for patients with locally and/or regionally advanced head and neck cancer. Cancer 119:1823–1831

    Article  PubMed  CAS  Google Scholar 

  • Goldson TM, Vielhauer G, Staub E, Miller S, Shim H, Hagedorn CH (2007) Eukaryotic initiation factor 4E variants alter the morphology, proliferation, and colony-formation properties of MDA-MB-435 cancer cells. Mol Carcinog 46:71–84

    Article  PubMed  CAS  Google Scholar 

  • Haddad RI, Shin DM (2008) Recent advances in head and neck cancer. N Engl J Med 359:1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Itasaka S, Kizaka-Kondoh S, Shibuya K, Morinibu A, Shinomiya K, Hiraoka M (2009) The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. J Biol Chem 284:5332–5342

    Article  PubMed  CAS  Google Scholar 

  • Haydon MS, Googe JD, Sorrells DS, Ghali GE, Li BD (2000) Progression of eIF4e gene amplification and overexpression in benign and malignant tumors of the head and neck. Cancer 88:2803–2810

    Article  PubMed  CAS  Google Scholar 

  • Hong AM, Dobbins TA, Lee CS, Jones D, Fei J, Clark JR, Armstrong BK, Harnett GB, Milross CG, Tran N, Peculis LD, Ng C, Milne AG, Loo C, Hughes LJ, Forstner DF, O’Brien CJ, Rose BR (2011) Use of cyclin D1 in conjunction with human papillomavirus status to predict outcome in oropharyngeal cancer. Int J Cancer 128:1532–1545

    Article  PubMed  CAS  Google Scholar 

  • Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS (1997) Pim-1 protein expression is regulated by its 5′-untranslated region and translation initiation factor elF-4E. Cell Growth Differ 8:1371–1380

    PubMed  CAS  Google Scholar 

  • Hosokawa Y, Okumura K, Terashima S, Sakakura Y (2012) Radiation protective effect of hypoxia-inducible factor-1α (HIF-1α) on human oral squamous cell carcinoma cell lines. Radiat Prot Dosim 152:159–163

    Article  CAS  Google Scholar 

  • Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ (2003) Cancer statistics, 2003. CA Cancer J Clin 53:5–26

    Article  PubMed  Google Scholar 

  • Kleiner HE, Krishnan P, Tubbs J, Smith M, Meschonat C, Shi R, Lowery-Nordberg M, ­Adegboyega P, Unger M, Cardelli J, Chu Q, Mathis JM, Clifford J, De Benedetti A, Li BD (2009) Tissue microarray analysis of eIF4E and its downstream effector proteins in human breast cancer. J Exp Clin Cancer Res 28:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Konicek BW, Dumstorf CA, Graff JR (2008) Targeting the eIF4F translation initiation complex for cancer therapy. Cell Cycle 7:2466–2471

    Article  PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345:544–547

    Article  PubMed  CAS  Google Scholar 

  • Le Tourneau C, Siu LL (2008) Molecular-targeted therapies in the treatment of squamous cell carcinomas of the head and neck. Curr Opin Oncol 20:256–263

    Article  PubMed  CAS  Google Scholar 

  • Liao YM, Kim C, Yen Y (2011) Mammalian target of rapamycin and head and neck squamous cell carcinoma. Head Neck Oncol 3:22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Licitra L, Locati LD, Bossi P (2008) Optimizing approaches to head and neck cancer. Metastatic head and neck cancer: new options. Ann Oncol 19:vii200–vii203

    Article  PubMed  Google Scholar 

  • Liu RY, Dong Z, Liu J, Yin JY, Zhou L, Wu X, Yang Y, Mo W, Huang W, Khoo SK, Chen J, Petillo D, The BT, Qian CN, Zhang JT (2011) Role of eIF3a in regulating cisplatin sensitivity and in translational control of nucleotide excision repair of nasopharyngeal carcinoma. Oncogene 30:4814–4823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Loyo M, Li RJ, Bettegowda C, Pickering CR, Frederick MJ, Myers JN, Agrawal N (2013) Lessons learned from next-generation sequencing in head and neck cancer. Head Neck 35:454–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Marur S, Forastiere AA (2008) Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc 83:489–501

    Article  PubMed  Google Scholar 

  • Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, Dewhirst MW (2005) Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8:99–110

    Article  PubMed  CAS  Google Scholar 

  • Molinolo AA, Hewitt SM, Amornphimoltham P, Keelawat S, Rangdaeng S, Meneses GA, Raimondi AR, Jufe R, Itoiz M, Gao Y, Saranath D, Kaleebi GS, Yoo GH, Leak L, Myers EM, Shintani S, Wong D, Massey HD, Yeudall WA, Lonardo F, Ensley J, Gutkind JS (2007) Dissecting the Akt/mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative. Clin Can Res 13:4964–4973

    Article  CAS  Google Scholar 

  • Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS (2009) Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol 45:324–334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nathan CO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A (1997) Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene 15:579–584

    Article  PubMed  CAS  Google Scholar 

  • Nathan CO, Franklin S, Abreo FW, Nassar R, De Benedetti A, Glass J (1999) Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer. J Clin Oncol 17:2909–2914

    PubMed  CAS  Google Scholar 

  • Nathan CO, Sanders K, Abreo FW, Nassar R, Glass J (2000) Correlation of p53 and the proto-oncogene eIF4E in larynx cancers: prognostic implications. Cancer Res 60:3599–3604

    PubMed  CAS  Google Scholar 

  • Nathan CO, Amirghahri N, Rice C, Abreo FW, Shi R, Stucker FJ (2002) Molecular analysis of surgical margins in head and neck squamous cell carcinoma patients. Laryngoscope 112:2129–2140

    Article  PubMed  CAS  Google Scholar 

  • Nathan CO, Amirghahari N, Abreo F, Rong X, Caldito G, Jones ML, Zhou H, Smith M, Kimberly D, Glass J (2004a) Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res 10:5820–5827

    Article  CAS  Google Scholar 

  • Nathan CO, Amirghahari N, Rong X, Zhou H, Harrison L (2004b) EIF4E overexpression may confer radioresistance in a head and neck cancer cell line. Otolaryngol Head Neck Surg 131:178

    Article  Google Scholar 

  • Nathan C, Amirghahari N, Rong X, Giordano T, Sibley D, Nordberg M, Glass J, Agarwal A, Caldito G (2007) Mammalian target of rapamycin inhibitors as possible adjuvant therapy for microscopic residual disease in head and neck squamous cell cancer. Cancer Res 67:2160–2168

    Article  PubMed  CAS  Google Scholar 

  • Nguyen SA, Walker D, Gillespie MB, Gutkind JS, Day TA (2012) mTOR inhibitors and its role in the treatment of head and neck squamous cell carcinoma. Curr Treat Options Oncol 13:71–81

    Article  PubMed  Google Scholar 

  • O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508

    Article  PubMed  PubMed Central  Google Scholar 

  • Oridate N, Kim HJ, Xu X, Lotan R (2005) Growth inhibition of head and neck squamous carcinoma cells by small interfering RNAs targeting eIF4E or cyclin D1 alone or combined with cisplatin. Cancer Biol Ther 4:318–323

    Article  PubMed  CAS  Google Scholar 

  • Psyrri A, Boutati E, Karageorgopoulou S (2011) Human papillomavirus in head and neck cancers: biology, prognosis, hope of treatment, and vaccines. Anticancer Drugs 22:586–590

    Article  PubMed  CAS  Google Scholar 

  • Psyrri A, Sasaki C, Vassilakopoulou M, Dimitriadis G, Rampias T (2012) Future directions in research, treatment and prevention of HPV-related squamous cell carcinoma of the head and neck. Head Neck Pathol 6:S121–S128

    Article  PubMed  Google Scholar 

  • Psyrri A, Seiwert TY, Jimeno A (2013) Molecular pathways in head and neck cancer. Am Soc Clin. Oncol Educ Book 2013:246–255

    Article  Google Scholar 

  • Rautava J, Syrjänen S (2012) Biology of human papillomavirus infections in head and neck carcinogenesis. Head Neck Pathol 6:S3–S15

    Article  PubMed  Google Scholar 

  • Raza S, Kornblum N, Kancharla VP, Baig MA, Singh AB, Kalavar M (2011) Emerging therapies in the treatment of locally advanced squamous cell cancers of head and neck. Recent Pat Anticancer Drug Discov 6:246–257

    Article  PubMed  CAS  Google Scholar 

  • Reis PP, Tomenson M, Cervigne NK, Machado J, Jurisica I, Pintilie M, Sukhai MA, Perez-Ordonez B, Grénman R, Gilbert RW, Gullane PJ, Irish JC, Kamel-Reid S (2010) Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol Cancer 9:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Rockwell S (1997) Oxygen delivery: implications for the biology and therapy of solid tumors. Oncol Res 9:383–390

    PubMed  CAS  Google Scholar 

  • Rothenberg SM, Ellisen LW (2012) The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest 122:1951–1957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salehi Z, Mashayekhi F (2006) Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem 39:404–409

    Article  PubMed  CAS  Google Scholar 

  • Saletta F, Suryo Rahmanto Y, Richardson DR (2010) The translational regulator eIF3a: the tricky eIF3 subunit! Biochim Biophys Acta 1806:275–286

    PubMed  CAS  Google Scholar 

  • Sasabe E, Zhou X, Li D, Oku N, Yamamoto T, Osaki T (2007) The involvement of hypoxia-inducible factor-1alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells. Int J Cancer 120:268–277

    Article  PubMed  CAS  Google Scholar 

  • Scapoli L, Girardi A, Rubini C, Martinelli M, Spinelli G, Palmieri A, Lo Muzio L, Carinci F (2011) LOH at PDCD4, CTNNB1, and CASP4 loci contributes to stage progression of oral cancer. Int J Immunopathol Pharmacol 24:89–93

    PubMed  CAS  Google Scholar 

  • Schwartz DL, Bankson J, Bidaut L, He Y, Williams R, Lemos R, Thitai AK, Oh J, Volgin A, Soghomonyan S, Yeh HH, Nishii R, Mukhopadhay U, Alauddin M, Mushkudiani I, Kuno N, Krishnan S, Bornman W, Lai SY, Powis G, Hazle J, Gelovani J (2011) HIF-1-dependent stromal adaptation to ischemia mediates in vivo tumor radiation resistance. Mol Cancer Res 9:259–270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Semenza GL (2004) Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell 5:405–406

    Article  PubMed  CAS  Google Scholar 

  • Siegele B, Cefalu C, Holm N, Sun G, Tubbs J, Meschonat C, Odaka Y, DeBenedetti A, Ghali GE, Chu Q, Mathis JM, Li BD (2008) eIF4E-targeted suicide gene therapy in a minimal residual mouse model for metastatic soft-tissue head and neck squamous cell carcinoma improves disease-free survival. J Surg Res 148:83–89

    Article  PubMed  CAS  Google Scholar 

  • Sorrells DL, Ghali GE, Meschonat C, DeFatta RJ, Black D, Liu L, De Benedetti A, Nathan CO, Li BD (1999a) Competitive PCR to detect eIF4E gene amplification in head and neck cancer. Head Neck 21:60–65

    Article  CAS  Google Scholar 

  • Sorrells DL Jr, Ghali GE, De Benedetti A, Nathan CO, Li BD (1999b) Progressive amplification and overexpression of the eukaryotic initiation factor 4E gene in different zones of head and neck cancers. J Oral Maxillofac Surg 57:294–299

    Article  Google Scholar 

  • Spilka R, Laimer K, Bachmann F, Spizzo G, Vogetseder A, Wieser M, Müller H, Haybaeck J, Obrist P (2012) Overexpression of eIF3a in squamous cell carcinoma of the oral cavity and its putative relation to chemotherapy response. J Oncol 2012:901956

    Article  PubMed  PubMed Central  Google Scholar 

  • Sturgis EM, Cinciripini PM (2007) Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers? Cancer 110:1429–1435

    Article  PubMed  Google Scholar 

  • Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, Khuri FR (2005) Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65:7052–7058

    Article  PubMed  CAS  Google Scholar 

  • Sunavala-Dossabhoy G, Palaniyandi S, Clark C, Nathan CO, Abreo FW, Caldito G (2011) Analysis of eIF4E and 4EBP1 mRNAs in head and neck cancer. Laryngoscope 121:2136–2141

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Endo M, Shinohara F, Echigo S, Rikiishi H (2009) Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol 64:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Syrjänen S (2010) The role of human papillomavirus infection in head and neck cancers. Ann Oncol 21:vii243–vii245

    Article  PubMed  Google Scholar 

  • Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Ramon yCS, Jones S, Vidal L, Shand N, Macarulla T, Ramos FJ, Dimitrijevic S, Zoellner U, Tang P, Stumm M, Lane HA, Lebwohl D, Baselga J (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26:1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Topisirovic I, Ruiz-Gutierrez M, Borden KL (2004) Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 64:8639–8642

    Article  PubMed  CAS  Google Scholar 

  • Topisirovic I, Kentsis A, Perez JM, Guzman ML, Jordan CT, Borden KL (2005) Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels. Mol Cell Biol 25:1100–1112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R (2004) Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24:6539–6549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ueda T, Sasaki M, Elia AJ, Chio II, Hamada K, Fukunaga R, Mak TW (2010) Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A 107:13984–13990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26:1932–1940

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhang Y (2012) Expression of programmed cell death 4 and its correlation with proliferation and apoptosis in laryngeal squamous cell carcinoma. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 26:266–269

    PubMed  CAS  Google Scholar 

  • Weiss RL, Calhoun KH, Ahmed AE, Stanley D (1992) Ornithine decarboxylase activity in tumor and normal tissue of head and neck cancer patients. Laryngoscope 102:855–857

    Article  PubMed  Google Scholar 

  • Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Teruya Feldstein J, Pelletier J, Lowe SW (2007) Dissecting eIF4E action in tumorigenesis. Genes Dev 21:3232–3237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu M, Liu Y, Di X, Kang H, Zeng H, Zhao Y, Cai K, Pang T, Wang S, Yao Y et al (2013) EIF4E over-expresses and enhances cell proliferation and cell cycle progression in nasopharyngeal carcinoma. Med Oncol 30:400

    Article  PubMed  Google Scholar 

  • Yu Z, Weinberger PM, Haffty BG, Sasaki C, Zerillo C, Joe J, Kowalski D, Dziura J, Camp RL, Rimm DL, Psyrri A (2005) Cyclin d1 is a valuable prognostic marker in oropharyngeal squamous cell carcinoma. Clin Cancer Res 11:1160–1166

    PubMed  CAS  Google Scholar 

  • Zhang L, Pan X, Hershey JW (2007) Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J Biol Chem 282:5790–5800

    Article  PubMed  CAS  Google Scholar 

  • Zimmer SG, DeBenedetti A, Graff JR (2000) Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. Anticancer Res 20:1343–1351

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health Grant R01CA102363 (to C.O.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherie-Ann O. Nathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nathan, CA., Ekshyyan, O., Anandharaj, A. (2014). Head and Neck Cancers. In: Parsyan, A. (eds) Translation and Its Regulation in Cancer Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9078-9_25

Download citation

Publish with us

Policies and ethics