Skip to main content

Other Body Fluids as Non-invasive Sources of Cell-Free DNA/RNA

  • Chapter
  • First Online:
Circulating Nucleic Acids in Early Diagnosis, Prognosis and Treatment Monitoring

Abstract

In addition to plasma and serum as sources of nucleic acids circulating in the whole body, amniotic fluid, saliva, urine, pleural effusion, bronchial lavage, bronchial aspirates, breast milk, colostrums, tears, seminal fluid, peritoneal fluid, pleural effusion and stools are all available for minimally invasive analysis of nucleic acids. This chapter introduces the possibilities of using nucleic acids from amniotic fluid, saliva, urine, cerebrospinal fluid and bronchial lavage/aspirates in attempts to produce reliable early markers for diagnosis, prognosis and treatment monitoring using minimally invasive methodology. Moreover, the data from amniotic fluid can be used also to further the understanding of normal and abnormal fetal development in utero. In addition, the data from saliva can be employed for monitoring the progress of premature born infants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741. doi:10.1373/clinchem.2010.147405

  2. Ahlquist DA, Skoletsky JE, Boynton KA, Harrington JJ, Mahoney DW, Pierceall WE, Thibodeau SN, Shuber AP (2000) Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel. Gastroenterology 119:1219–1227

    Google Scholar 

  3. Mazeh H, Mizrahi I, Ilyayev N, Halle D, Brücher B, Bilchik A, Protic M, Daumer M, Stojadinovic A, Itzhak A, Nissan A (2013) The diagnostic and prognostic role of microRNA in colorectal cancer – a comprehensive review. J Cancer 4:281–295. doi:10.7150/jca.5836

  4. Underwood MA, Gilbert WM, Sherman MP (2005) Amniotic fluid: not just fetal urine anymore. J Perinatol 25(5):341–348

    Article  PubMed  Google Scholar 

  5. Bianchi DW, LeShane E, Cowan JM (2001) Large amounts of cell-free fetal DNA are present in amniotic fluid. Clin Chem 47:1867–1869

    CAS  PubMed  Google Scholar 

  6. Lapaire O, Johnson KL, Bianchi DW (2008) Method for the extraction of high quantity and quality cell-free DNA from amniotic fluid. Methods Mol Biol 4444:303–309

    Article  Google Scholar 

  7. Chan KC, Ding C, Gerovassili A, Yeung SW, Chiu RW, Leung TN, Lau TK, Chim SS, Chung GT, Nicolaides KH, Lo YM (2006) Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem 52:2211–2218

    Google Scholar 

  8. Chiu RW, Chim SS, Wong IH, Wong CS, Lee WS, To KF, Tong JH, Yuen RK, Shum AS, Chan JK, Chan LY, Yuen JW, Tong YK, Weier JF, Ferlatte C, Leung TN, Lau TK, Lo KW, Lo YM (2007) Hypermethylation of RASSF1A in human and rhesus placentas. Am J Pathol 170:941–950

    Google Scholar 

  9. Hui L, Bianchi DW (2011) Cell-free fetal nucleic acids in amniotic fluid. Human Reprod Update 17:362–371

    Article  CAS  Google Scholar 

  10. Miura S, Miura K, Masuzaki H, Miyake N, Yoshiura K, Sosonkina N, Harada N, Shimokawa O, Nakayama D, Yoshimura S, Matsumoto N, Niikawa N, Ishimaru T (2006) Microarray comparative genomic hybridization (CGH)-based prenatal diagnosis for chromosome abnormalities using cell-free fetal DNA in amniotic fluid. J Hum Genet 51:412–417

    Google Scholar 

  11. Larrabee PB, Johnson KL, Pestova E, Lucas M, Wilber K, LeShane ES, Tantravahi U, Cowan JM, Bianchi DW (2004) Microarray analysis of cell-free fetal DNA in amniotic fluid: a prenatal molecular karyotype. Am J Hum Genet 75:485–491

    Google Scholar 

  12. Larrabee PB, Johnson KL, Peter I, Bianchi DW (2005) Presence of filterable and nonfilterable cell-free mRNA in amniotic fluid. Clin Chem 51:1024–1026

    Google Scholar 

  13. Slonim DK, Koide K, Johnson KL, Tantravahi U, Cowan JM, Jarrah Z, Bianchi DW (2009) Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses. Proc Natl Acad Sci U S A 106:9425–9429

    Google Scholar 

  14. Da Sacco S, Sedrakyan S, Boldrin F, Giuliani S, Parnigotto P, Habibian R, Warburton D, De Filippo RE, Perin L (2010) Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol 183:1193–1200

    Google Scholar 

  15. Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, Hager HD, Abdel-Bakky MS, Gutwein P, Altevogt P (2007) CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int 72:1095–1102

    Google Scholar 

  16. Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P (2011) Bodily fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86

    Google Scholar 

  17. Larrabee PB, Johnson KL, Lai C, Ordovas J, Cowan JM, Tantravahi U, Bianchi DW (2005) Global gene expression analysis of the living human fetus using cell-free messenger RNA in amniotic fluid. JAMA 293:836–842

    Google Scholar 

  18. Zwemer LM, Hui L, Wick HC, Bianchi DW (2013) RNASeq and microarray analyses highlight different aspects of the fetal transcriptome. Reprod Sci 20(3) Suppl: S-053

    Google Scholar 

  19. Hui L, Slonim DK, Wick HC, Johnson KL, Bianchi DW (2012) The amniotic fluid transcriptome: a source of novel information about human fetal development. Obstet Gynecol 119:111–118

    Google Scholar 

  20. Hui L, Wick HC, Moise KJ Jr, Johnson A, Luks F, Haeri S, Johnson KL, Bianchi DW (2013) Global gene expression analysis of amniotic fluid cell-free RNA from recipient twins with twin–twin transfusion syndrome. Prenat Diagn 33(9):873–883. doi:10.1002/pd.4150

  21. Michaels JE, Dasari S, Pereira L, Reddy AP, Lapidus JA, Lu X, Jacob T, Thomas A, Rodland M, Roberts CT Jr, Gravett MG, Nagalla SR (2007) Comprehensive proteomic analysis of the human amniotic fluid proteome: gestational age-dependent changes. J Proteome Res 6:1277–1285

    Google Scholar 

  22. Koide K, Slonim DK, Johnson KL, Tantravahi U, Cowan JM, Bianchi DW (2011) Transcriptomic analysis of cell-free fetal RNA suggests a specific molecular phenotype in trisomy 18. Hum Genet 129(3):295–305. doi:10.1007/s00439-010-0923-3

  23. Bianchi DW (2011) Gene expression analysis of amniotic fluid: new biomarkers and novel antenatal treatments. Clin Biochem 44:448–450

    Article  PubMed Central  Google Scholar 

  24. Guedj F, Hines D, Foley JC, Haydon PG, Bianchi DW (2013) Translating the transcriptome to develop antenatal treatments for fetuses with Down Syndrome. Reprod Sci 20(3 Suppl):64A

    Google Scholar 

  25. Hui L, Slonim DK, Wick HC, Johnson KL, Koide K, Bianchi DW (2012) Novel neurodevelopmental information revealed in amniotic fluid supernatant transcripts from fetuses with trisomies 18 and 21. Hum Genet 131(11):1751–1759. doi:10.1007/s00439-012-1195-x

  26. Vilardell M, Rasche A, Thormann A, Maschke-Dutz E, Pérez-Jurado LA, Lehrach H, Herwig R (2011) Meta-analysis of heterogeneous Down syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics 12:229

    Google Scholar 

  27. Roberts D, Gates S, Kilby M, Neilson JP (2008) Interventions for twin-twin transfusion syndrome: a Cochrane review. Ultrasound Obstet Gynecol 31:701–711

    Google Scholar 

  28. Senat MV, Deprest J, Boulvain M, Paupe A, Winer N, Ville Y (2004) Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med 351:136–144

    Google Scholar 

  29. Loo JA, Yan W, Ramachandran P, Wong DT (2010) Comparative human salivary and plasma proteomes. J Dent Res 89:1016–1023

    Google Scholar 

  30. Maron JL, Dietz JA, Parkin C (2012) Performing discovery-driven neonatal research by transcriptomic analysis of routinely discarded biofluids. J Matern Fetal Neonatal Med 25:2507–2511

    Article  CAS  PubMed  Google Scholar 

  31. Kumar SV, Hurteau GJ, Spivack SD (2006) Validity of messenger RNA expression analyses of human saliva. Clin Cancer Res 12:5033. doi:10.1158/1078-0432.CCR-06-0501

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Zhou X, St John MA, Wong DT (2004) RNA profiling of cell-free saliva using microarray technology. J Dent Res 83:199–203. doi:10.1177/154405910408300303

  33. Park NJ, Zhou X, Yu T, Brinkman BM, Zimmermann BG, Palanisamy V, Wong DT (2006) Characterization of salivary RNA by cDNA library analysis. Arch Oral Biol 52:30–35

    Google Scholar 

  34. Spielmann N, Ilsley D, Gu J, Lea K, Brockman J, Heater S, Setterquist R, Wong DT (2012) The human salivary RNA transcriptome revealed by massively parallel sequencing. Clin Chem 258:1314–1321. doi:10.1373/clinchem.2011.176941

  35. Dietz JA, Johnson KL, Wick HC, Bianchi DW, Maron JL (2011) Optimal techniques for mRNA extraction from neonatal salivary supernatant. Neonatology 101:55–60

    Google Scholar 

  36. Elashoff D, Zhou H, Reiss J, Wang J, Xiao H, Henson B, Hu S, Arellano M, Sinha U, Le A, Messadi D, Wang M, Nabili V, Lingen M, Morris D, Randolph T, Feng Z, Akin D, Kastratovic DA, Chia D, Abemayor E, Wong DT (2012) Prevalidation of salivary biomarkers for oral cancer detection. Cancer Epidemiol Biomarkers Prev 21:664–672. doi:10.1158/1055-9965.EPI-11-1093

  37. Zhang L, Farrell JJ, Zhou H, Elashoff D, Akin D, Park NH, Chia D, Wong DT (2010) Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology 138:949–957.e7. doi:10.1053/j.gastro..11.010

  38. Hu S, Wang J, Meijer J, Ieong S, Xie Y, Yu T, Zhou H, Henry S, Vissink A, Pijpe J, Kallenberg C, Elashoff D, Loo JA, Wong DT (2007) Salivary proteomic and genomic biomarkers for primary Sjögren’s syndrome. Arthritis Rheum 56:3588–3600

    Google Scholar 

  39. Gao K, Zhou H, Zhang L, Lee JW, Zhou Q, Hu S, Wolinsky LE, Farrell J, Eibl G, Wong DT (2009) Systemic disease-induced salivary biomarker profiles in mouse models of melanoma and non-small cell lung cancer. PLoS One 4:e5875. doi:10.1371/journal.pone.0005875

  40. Zhang L, Xiao H, Zhou H, Santiago S, Lee JM, Garon EB, Yang J, Brinkmann O, Yan X, Akin D, Chia D, Elashoff D, Park NH, Wong DT (2012) Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol Life Sci 69:3341–3350. doi:10.1007/s00018-012-1027-0

  41. Floriano PN, Christodoulides N, Miller CS, Ebersole JL, Spertus J, Rose BG, Kinane DF, Novak MJ, Steinhubl S, Acosta S, Mohanty S, Dharshan P, Yeh CK, Redding S, Furmaga W, McDevitt JT (2009) Use of saliva-based Nano-Biochip tests for acute myocardial infarction at the point of care: a feasibility study. Clin Chem 55(8):1530–1538

    Google Scholar 

  42. Zloczower M, Reznick AZ, Zouby RO, Nagler RM (2007) Relationship of flow rate, uric acid, peroxidase, and superoxide dismutase activity levels with complications in diabetic patients: can saliva be used to diagnose diabetes? Antioxid Redox Signal 9:765–773

    Google Scholar 

  43. Lee Y, Kim JH, Zhou H, Kim BW, Wong DT (2012) Salivary transcriptomic biomarkers for detection of ovarian cancer: for serous papillary adenocarcinoma. J Mol Med (Berl) 90:427–434

    Google Scholar 

  44. Maron JL, Johnson KL, Rocke DM, Cohen MG, Liley AJ, Bianchi DW (2010) Neonatal salivary analysis reveals global developmental gene expression changes in the premature infant. Clin Chem 56(3):409–416. doi:10.1373/clinchem.2009.136234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Amado FML, Ferreira R, Vitorino R (2013) One decade of salivary proteomics: current approaches and outstanding challenges. Clin Biochem 46:506–517

    Article  CAS  PubMed  Google Scholar 

  46. Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Kirmeyer S, Mathews TJ, Wilson EC (2011) Births: final data for 2009. Natl Vital Stat Rep 60(1):1–70

    Google Scholar 

  47. Day P, Lancaster P, Huang J (1998) Australia’s mothers and babies 1995. Perinatal Statistics Series 76

    Google Scholar 

  48. Dzakpasu S, Joseph KS, Rusen I (2000) Health Canada Canadian perinatal health report. Minister of Public Works and Government Services Canada, Ottawa

    Google Scholar 

  49. Hanssens M, Devlieger H, Martens GL, Keirse MJ (2005) Changes in preterm delivery rates are not readily explained. J Soc Gynecol Investig 12:265A

    Google Scholar 

  50. Berhman R, Butler A (2006) Preterm birth: causes, consequences, and prevention. The National Academies Press, Washington, DC

    Google Scholar 

  51. Dolan SM, Christiaens I (2013) Genome-wide association studies in preterm birth: implications for the practicing obstetrician-gynaecologist. BMC Pregnancy Childbirth 13(Suppl 1):S4

    Article  PubMed Central  PubMed  Google Scholar 

  52. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15:5473–5477. doi:10.1158/1078-0432.CCR-09-0736

  53. Liu C-J, Kao S-Y, Tu HF, Tsai MM, Chang KW, Lin SC (2010) Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis 16:360–364. doi:10.1111/j.1601-0825.2009.01646.x

  54. Su Y-H, Wang M, Block TM, Landt O, Botezatu I, Serdyuk O, Lichtenstein A, Melkonyan H, Tomei LD, Umansky S (2004) Transrenal DNA as a diagnostic tool: important technical notes. Ann N Y Acad Sci 1022:81–89

    Google Scholar 

  55. Botezatu I, Serdyuk O, Potapova G, Shelepov V, Alechina R, Molyaka Y, Ananév V, Bazin I, Garin A, Narimanov M, Knysh V, Melkonyan H, Umansky S, Lichtenstein A (2000) Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 46:1078–1084

    Google Scholar 

  56. Hung EC, Shing TK, Chim SS, Yeung PC, Chan RW, Chik KW, Lee V, Tsui NB, Li CK, Wong CS, Chiu RW, Lo YM (2009) Presence of donor-derived DNA and cells in the urine of sex-mismatched hematopoietic stem cell transplant recipients: implication for the transrenal hypothesis. Clin Chem 55(4):715–722

    Google Scholar 

  57. Umanski SR, Tomei LD (2006) Transrenal DNA testing: progress and perspectives. Expert Rev Mol Diagn 6(2):153–163

    Article  Google Scholar 

  58. Illanes S, Denbow ML, Smith RP, Overton TG, Soothill PW, Finning K (2006) Detection of cell-free fetal DNA in maternal urine. Prenat Diagn 26:1216–1218

    Google Scholar 

  59. Li Y, Zhong XY, Kang A, Troeger C, Holzgreve W, Hahn S (2009) Inability to detect cell free fetal DNA in the urine of normal pregnant women nor in those affected by preeclampsia associated HELLP syndrome. Clin Chem 55:605–606

    Google Scholar 

  60. Zhong XY, Hahn D, Troeger C, Klemm A, Stein G, Thomson P, Holzgreve W, Hahn S (2001) Cell-free DNA in urine: a marker for kidney graft rejection, but not for prenatal diagnosis? Ann N Y Acad Sci 945:250–257

    Google Scholar 

  61. Laxman B, Tomlins SA, Mehra R, Morris DS, Wang L, Helgeson BE, Shah RB, Rubin MA, Wei JT, Chinnaiyan AM (2006) Noninvasive detection of TMPRSS2: ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia 8(10):885–888

    Google Scholar 

  62. Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, Miick S, Williamsen S, Hodge P, Meinke J, Blase A, Penabella Y, Day JR, Varambally R, Han B, Wood D, Wang L, Sanda MG, Rubin MA, Rhodes DR, Hollenbeck B, Sakamoto K, Silberstein JL, Fradet Y, Amberson JB, Meyers S, Palanisamy N, Rittenhouse H, Wei JT, Groskopf J, Chinnaiyan AM (2011) Urine TMPRSS2: ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 3:94ra72. doi:10.1126/scitranslmed.3001970

  63. Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100:1603–1607

    Google Scholar 

  64. Melkonyan HS, Feaver WJ, Meyer E, Scheinker V, Shekhtman EM, Xin Z, Umansky SR (2008) Transrenal nucleic acids: from proof of principle to clinical tests. Ann N Y Acad Sci 1137:73–81

    Google Scholar 

  65. Moulière F, Thierry AR (2012) The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opin Biol Ther 12(Suppl 1):S209–S215

    Article  PubMed  Google Scholar 

  66. Crawford JM (2008) The origins of bladder cancer. Lab Invest 88:686–693. doi:10.1038/labinvest.2008.48

    Article  CAS  PubMed  Google Scholar 

  67. Kandimalla R, Masius R, Van Tilborg AA, Beukers W, Orntoft T, Dyrsjot L, Bangma CH, Zwarthoff EC (2012) Genome-wide analysis of CpG island methylation identified OTX1, OSR1 and ONECUT2 as biomarkers for recurrent bladder cancer detection in voided urine. Cancer Res 72(8) Suppl 1, Abstract 4023. doi:10.1158/1538-7445.AM2012-4023

  68. Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC (2010) FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One 5(11):e13821. doi:10.1371/journal.pone.0013821

  69. Szarvas T, Kovalszky I, Bedi K, Szendroi A, Majoros A, Riesz P, Füle T, László V, Kiss A, Romics I (2007) Deletion analysis of tumor and urinary DNA to detect bladder cancer: urine supernatant versus urine sediment. Oncol Rep 18(2):405–409

    Google Scholar 

  70. Utting M, Werner W, Dahse R, Schubert J, Junker K (2002) Microsatellite analysis of free tumor DNA in urine, serum, and plasma of patients: a minimally invasive method for the detection of bladder cancer. Clin Cancer Res 8:35–40

    Google Scholar 

  71. Casadio V, Calistri D, Salvi S, Gunelli R, Carretta E, Amadori D, Silvestrini R, Zoli W (2013) Urine cell-free DNA integrity as a marker for early prostate cancer diagnosis: a pilot study. Biomed Res Int 2013:270457. doi:10.1155/2013/270457

  72. Yeager M, Chatterjee N, Ciampa J, Jacobs KB, Gonzalez-Bosquet J, Hayes RB, Kraft P, Wacholder S, Orr N, Berndt S, Yu K, Hutchinson A, Wang Z, Amundadottir L, Feigelson HS, Thun MJ, Diver WR, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Crawford ED, Haiman CA, Henderson B, Kolonel L, Le Marchand L, Siddiq A, Riboli E, Key TJ, Kaaks R, Isaacs W, Isaacs S, Wiley KE, Gronberg H, Wiklund F, Stattin P, Xu J, Zheng SL, Sun J, Vatten LJ, Hveem K, Kumle M, Tucker M, Gerhard DS, Hoover RN, Fraumeni JF Jr, Hunter DJ, Thomas G, Chanock SJ (2009) Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 41(10):1055–1057

    Google Scholar 

  73. Zhang J, Tong KL, Li PK, Chan AY, Yeung CK, Pang CC, Wong TY, Lee KC, Lo YM (1999) Presence of donor- and recipient-derived DNA in cell-free urine samples of renal transplantation recipients: urinary DNA chimerism. Clin Chem 45(10):1741–1746

    Google Scholar 

  74. Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, Hartono C, Li B, Sharma VK, Seshan SV, Kapur S, Hancock WW, Schwartz JE, Suthanthiran M (2005) Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 353(22):2342–2351

    Google Scholar 

  75. Mas VR, Mas LA, Archer KJ, Yanek K, King AL, Gibney EM, Cotterell A, Fisher RA, Posner M, Maluf DG (2007) Evaluation of gene panel mRNAs in urine samples of kidney transplant recipients as a non-invasive tool of graft function. Mol Med 13:315–324

    Google Scholar 

  76. Szeto CC, Lai KB, Chow KM, Szeto CY, Yip TW, Woo KS, Li PK, Lai FM (2005) Messenger RNA expression of glomerular podocyte markers in the urinary sediment of acquired proteinuric diseases. Clin Chim Acta 361:182–190

    Google Scholar 

  77. Wang G, Lai FM, Tam LS, Li KM, Lai KB, Chow KM, Li KT, Szeto CC (2007) Messenger RNA expression of podocyte-associated molecules in urinary sediment of patients with lupus nephritis. J Rheumatol 34:2358–2364

    Google Scholar 

  78. Wang G, Lai FM, Lai KB, Chow KM, Li KT, Szeto CC (2007) Messenger RNA expression of podocyte-associated molecules in the urinary sediment of patients with diabetic nephropathy. Nephron Clin Pract 106:c169–c179

    Google Scholar 

  79. Wang G, Lai FM, Lai KB, Chow KM, Kwan CH, Li KT, Szeto CC (2008) Urinary mRNA expression of ACE and ACE2 in human type 2 diabetic nephropathy. Diabetologia 51:1062–1067

    Google Scholar 

  80. Wang G, Lai FM, Lai KB, Chow KM, Kwan BC, Li PK, Szeto CC (2008) Urinary messenger RNA expression of podocyte-associated molecules in patients with diabetic nephropathy treated by angiotensin-converting enzyme inhibitor and angiotensin receptor blocker. Eur J Endocrinol 158:317–322. doi:10.1530/EJE-07-0708

  81. Zheng M, Lv L-L, Ni J, Ni HF, Li Q, Ma KL, Liu BC (2011) Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy. PLoS One 6:e20431. doi:10.1371/journal.pone.0020431

  82. Casas I, Powell L, Klapper PE, Cleator GM (1995) New method for the extraction of viral RNA and DNA from cerebrospinal fluid for use in the polymerase chain reaction assay. J Virol Methods 53:25–36

    Google Scholar 

  83. van Harten A, Mulders J, Cevik C, Kester M, Scheltens P, van der Flier W, Oudejans C (2011) MicroRNA analysis in the spinal fluid of Alzheimer patients: a methodological feasibility study. In: Gahan PB (ed) Circulating nucleic acids in plasma and serum. Springer, New York, pp 275–282

    Google Scholar 

  84. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Google Scholar 

  85. Burgos KL, Javaherian A, Bomprezzi R (2013) Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA 19:1–11

    Article  Google Scholar 

  86. Wang HC, Yang TM, Lin WC, Lin YJ, Tsai NW, Liou CW, Kwan AL, Lu CH (2013) The value of serial plasma and cerebrospinal fluid nuclear and mitochondrial deoxyribonucleic acid levels in aneurysmal subarachnoid hemorrhage. J Neurosurg 118:13–19. doi:10.3171/2012.8

  87. Miller DC, Hochberg FH, Harris NL, Gruber ML, Louis DN, Cohen H (1994) Pathology with clinical correlations of primary central nervous system non-Hodgkin’s lymphoma. The Massachusetts general hospital experience 1958–1989. Cancer 74:1383–1397

    Google Scholar 

  88. Fischer L, Martus P, Weller M, Klasen HA, Rohden B, Röth A, Storek B, Hummel M, Nägele T, Thiel E, Korfel A (2008) Meningeal dissemination in primary CNS lymphoma: prospective evaluation of 282 patients. Neurology 71(14):1102–1108

    Google Scholar 

  89. Kiewe P, Fischer L, Martus P, Thiel E, Korfel A (2010) Meningeal dissemination in primary CNS lymphoma: diagnosis, treatment, and survival in a large monocenter cohort. Neuro Oncol 12(4):409–417

    Google Scholar 

  90. Schroers R, Baraniskin A, Heute C, Vorgerd M, Brunn A, Kuhnhenn J, Kowoll A, Alekseyev A, Schmiegel W, Schlegel U, Deckert M, Pels H (2010) Diagnosis of leptomeningeal disease in diffuse large B-cell lymphomas of the central nervous system by flow cytometry and cytopathology. Eur J Haematol 85(6):520–528

    Google Scholar 

  91. Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, Maghnouj A, Z­llner H, Reinacher-Schick A, Schmiegel W, Hahn SA, Schroers R (2011) Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood 117:3140–3146. doi:10.1182/blood-2010-09-308684

  92. Robertus JL, Harms G, Blokzijl T, Booman M, de Jong D, van Imhoff G, Rosati S, Schuuring E, Kluin P, van den Berg A (2009) Specific expression of miR-17-5p and miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. Mod Pathol 22:547–555

    Google Scholar 

  93. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Lawrie CH (2007) MicroRNAs and haematology: small molecules, big function. Br J Haematol 137:503–512

    Article  CAS  PubMed  Google Scholar 

  95. Pospisil V, Mocikova H, Jankovska M, Markova J, Gaherova L, Kozak T, Stopka T (2011) MicroRNA analysis in the Cerebrospinal fluid and blood serum of lymphoma patients at diagnosis and in response to therapy. In: Abstract 3663 53rd ASH annual meeting and exposition, San Diego, 10–13 December 2011

    Google Scholar 

  96. Chen WJ, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, Loguidice L, Soto H, Garrett M, Zhu LD, Sivaraman S, Chen C, Wong ET, Carter BS, Hochberg FH, Breakefield XO, Skog J (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109. doi:10.1038/mtna.2013.28

  97. Holdenrieder S, Spuler A, Tischinger M, Nagel D, Stieber (2010) Presence of nucleosomes in cerebrospinal fluid of glioblastoma patients – potential for therapy monitoring. In: Gahan P B (ed) Circulating nucleic acids in plasma and serum, Springer Publishing Company, New York, p 79

    Google Scholar 

  98. Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD (2009) Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 18:1061–1083

    Google Scholar 

  99. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331

    Google Scholar 

  100. Angert RM, Leshane ES, Yarnell RW (2004) Cell-free fetal DNA in the cerebrospinal fluid of women during the peripartum period. Am J Obstet Gynecol 190:1087–1090

    Article  CAS  PubMed  Google Scholar 

  101. Tyler BM, Jansen K, McCormick DJ, Douglas CL, Boules M, Stewart JA, Zhao L, Lacy B, Cusack B, Fauq A, Richelson E (1999) Peptide nucleic acids targeted to the neurotensin receptor and administered i.p. cross the blood-brain barrier and specifically reduce gene expression. Proc Natl Acad Sci U S A 96:7053–7058

    Google Scholar 

  102. Schmidt B, Carstensena T, Engelb E, Jandrig B (2004) Detection of cell-free nucleic acids in bronchial lavage fluid. Eur J Cancer 40:452–460

    Article  CAS  PubMed  Google Scholar 

  103. Kirsch C, Weickmann S, Schmidt B, Fleischhacker M (2008) An improved method for the isolation of free-circulating plasma DNA and cell-free DNA from other body fluids. Ann N Y Acad Sci 1137:135–139. doi:10.1196/annals.1448.035

  104. Schmidt B, Weickmann S, Witt C, Fleischhacker M (2008) Integrity of cell-free plasma DNA in patients with lung cancer and nonmalignant lung disease. Ann N Y Acad Sci 1137:207–213

    Google Scholar 

  105. Kneip C, Schmidt B, Seegebarth A, Weickmann S, Fleischhacker M, Liebenberg V, Field JK, Dietrich D (2011) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol 6(10):1632–1638

    Google Scholar 

  106. Schmidt B, Liebenberg V, Dietrich D, Schlegel T, Kneip C, Seegebarth A, Flemming N, Seemann S, Distler J, Lewin J, Tetzner R, Weickmann S, Wille U, Liloglou T, Raji O, Walshaw M, Fleischhacker M, Witt C, Field JK (2010) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer 10:600–609. doi:10.1186/1471-2407-10-600

  107. Dietrich D, Knelp C, Raji O, Liloglou T, Seegebarth A, Schlegel T, Flemming N, Rausch S, Distler J, Fleischhacker M, Schmidt B, Giles T, Walshaw M, Warburton C, Liebenberg V, Field JK (2012) Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int J Oncol 40:825–832

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Gahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hui, L., Maron, J.L., Gahan, P.B. (2015). Other Body Fluids as Non-invasive Sources of Cell-Free DNA/RNA. In: Gahan, P. (eds) Circulating Nucleic Acids in Early Diagnosis, Prognosis and Treatment Monitoring. Advances in Predictive, Preventive and Personalised Medicine, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9168-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9168-7_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9167-0

  • Online ISBN: 978-94-017-9168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics